18.781 Problem Set 6
Due Monday, April 8 in class.

This problem set is about continued fractions. To fix the notation, I'll write here
a little of what’s written in the text. The starting point is two integers

Up, U1, Uy Z 1.

The algorithm for computing the continued fraction expansion is very much like
the Euclidean algorithm: repeated division with remainder

Up = u1ap + Uz, (0 <ug <uy)
U] = U271 + U3, (O <uz < U,g)
Up—1 = UpQp—1 + Unt1 (0 < Up+1 < un)

Uy = Up410n.
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la. The text says that you should start with a fraction ug/u; in lowest terms;
that is, with the property that ug and u; have no common factor. If you do that,
what is the value of u,417

1b. Explain what happens in the algorithm above if you start with a fraction
ug/uy that is not in lowest terms.

2. Define
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Prove that for all 0 < j <n
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3. If x > 0 is any real number, define
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(If = is a positive integer, this is consistent with our notation for continued frac-
tions.) Using the notation of Problem 2, prove that
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4. Find an explicit formula (something like 4 — 24/3) for the periodic continued
fraction

(1,2,3,1,2,3,1,2,3,...) = (1,2,3).

(Hint: if you use the previous problems, you can make most of the arithmetic into
multiplying some 2 x 2 matrices.)



