
18.781 Problem Set 5 Solutions

First problems are about the idea of a product of two rings. Definition of a ring
is in the text, except that you should ignore the requirement that the ring have at
least two elements. (That won’t really come up in the problem.)

Suppose S1 and S2 are rings. The product ring S1 × S2 is the set of all ordered
pairs

S1 × S2 = {(s1, s2) | s1 ∈ S1, s2 ∈ S2},

with addition and multiplication defined “coordinate by coordinate:”

(s1, s2) + (s′1, s
′

2) = (s1 + s′1, s2 + s′2), (s1, s2) · (s
′

1, s
′

2) = (s1 · s
′

1, s2 · s
′

2).

You may assume that this definition makes S1 × S2 a ring, with

0S1×S2
= (0S1

, 0S2
), 1S1×S2

= (1S1
, 1S2

).

Recall also (what I hope I mentioned in class) that an isomorphism of rings R
and R′ is a homomorphism φ:R → R′ which is one-to-one and onto: that is, every
element of R′ is the image (“onto”) of a unique (“one-to-one”) element of R.

1. Suppose that R is any ring. Explain why every homomorphism
from R to S1 × S2 must be of the form

φ(r) = (φ1(r), φ2(r)),

with φi a homomorphism from R to Si.

Any function f from R to S1 × S2 is the same as a pair of functions fi from R
to Si. This is just the definition of the set of S1 × S2: giving an element (s1, s2) of
S1×S2 is the same thing as giving an element s1 of S1 and an element s2 of S2. So
suppose that φ = (φ1, φ2) is actually a homomorphism. This means three things:

φ(r + r′) = φ(r) + φ(r′), φ(r · r′) = φ(r) · φ(r′), φ(1R) = 1S .

Let’s write what those three things mean using the definition of S1 × S2. On the
left of the first equation we have

(φ1(r + r′), φ2(r + r′))

and on the right

(φ1(r), φ2(r)) + (φ1(r
′), φ2(r

′)) = (φ1(r) + φ1(r
′), φ2(r) + φ2(r)

′).

So the first equality means two equalities

φ1(r + r′) = φ1(r) + φ1(r
′) and φ2(r + r′) = φ2(r) + φ2(r

′) :

that each of φ1 and φ2 respects addition. In the same way, the second defining
property means two equalities

φ1(r · r
′) = φ1(r) · φ1(r

′) and φ2(r · r
′) = φ2(r) · φ2(r

′) :
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that each of φ1 and φ2 respects multiplication. Finally the third requirement means
two requirements

φ1(1R) = 1S1
and φ2(1R) = 1S2

:

that each of φ1 and φ2 respects the multiplicative identity. This shows that a ring
homomorphism from R to S1 × S2 is exactly the same thing as a pair of
ring homomorphisms from R to Si, which is (slightly more than) what you
were asked to show.

Suppose n is a positive integer. Recall that Z/nZ means the ring of residue
classes of integers modulo n: if x is any integer, then the residue class of x modulo
n is

Cn
x = {x+ nb|b ∈ Z} = {x′ ∈ Z|n|(x− x′)}.

There are n residue classes modulo n, and

Z/nZ = {Cn
x | x ∈ Z} = {Cn

0 , C
n
1 , . . . , C

n
n−1}.

(These are all things you already know; I write them just to fix notation.)

2. Suppose m and n are positive integers. Prove that there is a ring
homomorphism

φm
n :Z/nZ → Z/mZ

if and only if m|n; that in this case there is exactly one such homomor-
phism; and that the homomorphism is onto.

The multiplicative identity of Z/nZ is Cn
1 . By definition, any ring homomor-

phism from Z/nZ to Z/mZ has to satisfy

φ(Cn
1 ) = Cm

1 .

If 1 ≤ x ≤ n, then
Cn

x = Cn
1 + · · ·+ Cn

1
︸ ︷︷ ︸

x summands

,

and therefore (since φ respects addition)

φ(Cn
x ) = φ



Cn
1 + · · ·+ Cn

1
︸ ︷︷ ︸

x summands





= Cm
1 + · · · + Cm

1
︸ ︷︷ ︸

x summands

= Cm
x .

So there is only one possible ring homomorphism, and (if it exists) it is onto.
The only question is whether it exists; that is, whether the “definition”

φ(Cn
x ) = Cm

x

makes sense. “Makes sense” means that if Cn
x = Cn

x′ , then Cm
x = Cm

x′ . The first
requirement is that n divides x − x′, and the second is that m divides x − x′. So
“makes sense” means exactly

every integer divisible by n is also divisible by m.
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This requirement is exactly the same as m|n.

3. Suppose m|n are positive integers, and consider the ring homomor-
phism

φm
n :Z/nZ → Z/mZ

from #2. Prove that
φm
n (Cn

x ) = 0 ⇐⇒ m|x.

What’s shown in Problem 2 is that

φm
n (Cn

x ) = Cm
x ,

and by definition this is 0 = Cm
0 if and only if m|x.

4. Suppose that n is a positive integer and that n = m1 ·m2, with mi a
positive integer. Prove that

Z/nZ ≃ Z/m1Z× Z/m2Z

if and only if gcd(m1,m2) = 1. (You are asked whether the ring of integers
modulo n is isomorphic to the product of these two smaller rings.)

According to Problem 1, any homomorphism from Z/nZ to the product must
be of the form

φ(r) = (φ1(r), φ2(r)),

with φi:Z/nZ → Z/miZ a homomorphism. According to Problem 2, there is
exactly one such homomorphism φi, namely

φi(C
n
x ) = Cmi

x .

According to Problem 3,

φ(Cn
x ) = 0 ⇐⇒ φ1(C

n
x ) = 0 and φ2(C

n
x ) = 0

⇐⇒ m1|x and m2|x

⇐⇒ lcm(m1,m2)|x

⇐⇒ [n/ gcd(m1,m2)]|x.

We now look at two cases. Suppose first that gcd(m1,m2) = 1. Then

φ(Cn
x ) = 0 ⇐⇒ n|x ⇐⇒ Cn

x = Cn
0 = 0.

Furthermore

φ(Cn
x ) = φ(Cn

y ) ⇐⇒ φ(Cn
x −Cn

y ) = 0

⇐⇒ φ(Cn
x−y) = 0

⇐⇒ n|(x− y) ⇐⇒ Cn
x = Cn

y ;

so the homomorphism φ is one-to-one (distinct elements of Z/nZ have distinct
images). Because Z/nZ and Z/m1Z × Z/m2Z both have exactly n = m1 · m2
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elements, the fact that φ is one-to-one means it must also be onto. So in this case
φ is an isomorphism, as we wished to show.

For the second case, suppose that gcd(m1,m2) > 1, so that

d =def lcm(m1,m2) = n/ gcd(m1,m2) < n.

According to what we proved above,

φ(Cn
d ) = 0 = φ(Cn

0 );

so the distinct elements Cn
d and Cn

0 have the same image, so φ is not one-to-one.
So φ is not an isomorphism, as we wished to show.


