18.781 Problem Set 5

Due Monday, October 17 in class.

1. You might remember from calculus Newton’s method for finding roots of the equation \(f(t) = 0 \). The idea is to begin with an approximation \(t_0 \) to a root; to write down the linear approximation

\[
 f(t) \approx f(t_0) + f'(t_0)(t - t_0),
\]

and then to choose as a (hopefully better) approximation to a root of \(f \) a root \(t_1 \) of the linear equation

\[
 0 = f(t_0) + f'(t_0)(t_1 - t_0);
\]

that is, to define

\[
 t_1 = t_0 - \frac{f(t_0)}{f'(t_0)}.
\]

Now you can repeat the process starting with \(t_1 \) in place of \(t_0 \). This makes sense as long as \(f'(t_1) \neq 0 \), and under favorable conditions the sequence \(\{t_i\} \) converges to a root of \(f \). In this problem I’ll look at the function \(f(t) = t^2 - N \), with \(N \) a positive integer; approximating roots of \(f \) means approximating \(\sqrt{N} \).

1(a). Show that if \(t_0 \) is any positive number (regarded as an approximation to \(\sqrt{N} \)) then Newton’s method leads to the new approximation

\[
 t_1 = \frac{1}{2}(t_0 + \frac{N}{t_0}).
\]

(You can think of this as saying that if \(t_0 \) is (for instance) a little smaller than \(\sqrt{N} \), then \(N/t_0 \) is roughly the same amount larger than \(\sqrt{N} \), so the average of these two numbers is quite close to \(\sqrt{N} \).)

1(b). Show that if \(x_0 \) and \(y_0 \) are positive integers, and we think of \(t_0 = x_0/y_0 \) as a rational approximation to \(\sqrt{N} \), then Newton’s method leads to a new rational approximation

\[
 t_1 = x_1/y_1, \quad x_1 = x_0^2 + Ny_0^2, \quad y_1 = 2x_0y_0.
\]

1(c). Suppose that \((x_0, y_0)\) is a solution of Pell’s equation \(x^2 - Ny^2 = 1 \). Prove that the pair \((x_1, y_1)\) defined in (b) is also a solution.

1(d). You may notice that the new solutions to Pell’s equation provided by (c) all have \(y \) even. Suppose that \(N \) is an even integer not divisible by 4. Prove that if \((x, y)\) is any solution of Pell’s equation \(x^2 - Ny^2 = 1 \), then \(y \) must be even.

2. I’ll be proving in class that if \(\xi \) is any irrational real number, then there are infinitely many rational numbers \(p/q \) such that

\[
 |\xi - p/q| < 1/q^2.
\]

Prove that this assertion is false for every rational number: that is, that if \(r \) is a rational number, then there are only finitely many distinct rational numbers \(p/q \) such that

\[
 |r - p/q| < 1/q^2.
\]

3. Problem 5.4.5 in the text on page 83.