
18.781 Problem Set 4 Solutions

1. I have made a toy RSA encryption system. I announce to you
the public modulus m = 221 and the public encryption key k = 77. To
encrypt a message a to me (which can be any positive number between
1 and 220), you must calculate a77 (mod 221).

1(a). Suppose that you wish to send me the private message 2. What
is the encrypted message you should send?

Make a table of the powers-of-two powers of a modulo 221 using by repeated
squaring:

22
0

≡ 2 (mod 221), 22
1

≡ 22 ≡ 4 (mod 221), 22
2

≡ 42 ≡ 16 (mod 221),

22
3

≡ 162 ≡ 35 (mod 2)

22
4

≡ 352 ≡ 120 (mod 221), 22
5

≡ 1202 ≡ 35 (mod 221),

22
6

≡ 352 ≡ 120 (mod 221).

Now you can calculate

277 ≡ 264 · 28 · 24 · 21 ≡ 120 · 35 · 16 · 2 ≡ 32.

1(b). Not content with the ability to send me private messages, you
have decided to try to read my private messages. You find that the Dean
has sent me the encrypted message 95. What was the Dean’s actual
message to me?

The easiest approach is to invert the key 77 modulo φ(221). To calculate that,
we need to factor 221. Since its square root is smaller than 15, 221 must have a
prime factor less than 15. This is a case for trial division. Clearly it isn’t divisible
by 2, 3, or 5, and the remainder on division by 7 is four. The remainder on division
by 11 is 1. It’s divisible by 13:

221 = 13 · 17,

and 17 is also prime. Follows that

φ(221) = (13− 1) · (17− 1) = 12 · 16 = 192.

To decode the message, we must find an inverse of the key 77 modulo 192. I won’t
go through the Euclidean algorithm method, but it discovers the equation

(−2) · (192) + (5) · (77) = 1,

so the inverse is 5. To decode a message, raise it to the fifth power modulo 221.
For the coded message you sent in (a), this gives

322
0

≡ 32 (mod 221), 322 = 1024 ≡ 140 (mod 221),

(322)2 ≡ (140)2 ≡ 152 (mod 221).



2

Now
325 = 324 · 32 ≡ 152 · 32 ≡ 2 (mod 221),

which is indeed the secret message you encoded in (a).
For the Dean’s message, we compute powers of 95 modulo 221:

(95)2
0

≡ 95 (mod 221), 952 ≡ 185 (mod 221),

(95)4 ≡ (185)2 ≡ 191 (mod 221).

Now we can decode:

(95)5 = (95)4 · 95 ≡ 191 · 95 ≡ 23 (mod 221).

The Dean’s message was 23.

2. Recall that Euler’s φ function is defined for every positive integer
m as

φ(m) = number of integers 1 ≤ a ≤ m such that gcd(a,m) = 1.

In particular, this means that φ(1) = 1.

2(a). Suppose that d is a positive divisor of m, and that 1 ≤ a ≤ m.
Prove that gcd(a,m) = d if and only if d|a and gcd(a/d,m/d) = 1.

If gcd(a,m) = d, then first of all d|a and (as we were already assuming) d|m.
Therefore gcd(a/d,m/d) = x is defined; it is the largest positive integer dividing
both a/d and m/d. Now it’s clear that z|(a/d) if and only if (zd)|a. (This is written
in Theorem 1.1(6) of the text.) So xd is the largest integer dividing a and m.

2(b). Suppose that d is a positive divisor of m. Prove that

φ(m/d) = number of integers 1 ≤ a ≤ m such that gcd(a,m) = d.

By(a), the set on the right is

integers 1 ≤ a ≤ m such that gcd(a/d,m/d) = 1.

That is, it is the same as d times the integers

integers 1 ≤ b ≤ m/d such that gcd(b,m/d) = 1.

The number of such integers is φ(m/d) by definition.

2(c). Prove Gauss’s formula

∑

d|m

φ(m/d) = m.

If 1 ≤ a ≤ m, then gcd(a,m) must be a positive divisor d of m. By (a), the m
integers from 1 to m break into disjoint sets

Sd =def {1 ≤ a ≤ m | gcd(a,m) = d}.
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Since these sets are disjoint,

m =
∑

d|m

#Sd.

By (b), this is exactly Gauss’s formula.

2(d). You know that if p is a prime number, then φ(p) = p − 1. Use
this fact and part (c) to calculate φ(21).

If m = pq has distinct prime factors p and q, then the divisors of pq are 1, p, q,
and pq. Gauss’s formula is therefore

pq = φ(pq) + φ(p) + φ(q) + φ(1) = φ(pq) + (p − 1) + (q − 1) + 1.

Therefore
φ(pq) = pq − p− q + 1 = (p− 1)(q − 1).

In particular,
φ(21) = φ(3 · 7) = (3− 1)(7 − 1) = 12.

3. This problem is stolen from a text “Discrete math for computer
science students” by Ken Bogart and Cliff Stein. The goal is to factor
N = 224, 551, in order to get some sense of how difficult factoring large
numbers might really be. You may assume (as you might verify by trial
divisions by hand) that N has no prime factors less than or equal to
59. You may also assume (as you might verify with a calculator) that
N1/2 = 473.86 . . . and N1/3 = 60.78 . . . .

3(a). Prove that if N is not prime, then it must be the product of
exactly two prime factors p1 < p2, with 61 ≤ p1 ≤ 467.

Assume to the contrary that N is the product of three or more primes. Pick
three of those primes, pi for i = 1, 2, 3. We are given that pi > 59 for all i. As the
pis are prime, we have pi ≥ 61 > N1/3, and hence their product is greater than
N , a contradiction. As N1/2 is not a natural number, we have that the two prime
factors are distinct, say p1 < p2, and as were given p1 > 59, we must have p1 ≥ 61.
We also must have p1 < N1/2. We can check (in our prime table, for example) that
the largest prime less than 474 is 467.

3(b). Find a table of prime numbers. How many are there between
61 and 467?

In my table they aren’t numbered, so I actually had to count; I got 74, but
that’s not absolutely reliable.

3(c). Suppose that some kindly oracle tells you that p1 is between 400
and 450. Use trial divisions (with the table of primes you located in (b))
to find a prime factorization of N .

The result of this effort is 224551 = 431 · 521.


