1. Representations of compact Lie groups

This is to write down some facts which are needed to do the homework. The main point is Proposition 1.4.

Setting is that we have a compact connected Lie group with a choice of maximal torus

(1a)
$$G \supset T$$
.

Attached to the torus are two lattices

(1b)
$$X^*(T) = \text{Hom}(T, U(1)) = \text{character lattice},$$

$$X_*(T) = \operatorname{Hom}(U(1), T) = \operatorname{cocharacter lattice},$$

in duality by a pairing \langle , \rangle . Write

(1c)
$$\mathfrak{g}_0 = \operatorname{Lie}(G), \quad \mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C}$$

for the Lie algebra and its complexification; similar notation is used for other groups. The roots are defined by the weight decomposition of Tin the adjoint representation

(1d)
$$\mathfrak{g} = \mathfrak{t} \oplus \sum_{\alpha \in R} \mathfrak{g}(\alpha);$$

then

(1e)
$$R = R(G,T) \subset X^*(T) \setminus \{0\}, \qquad R^{\vee} = R^{\vee}(G,T) \subset X_*(T) \setminus \{0\},$$

where I have not recalled the definition of the coroots R^{\vee} .

It's often useful to have the rational vector spaces

(1f)
$$X * (\mathbb{Q}) =_{\operatorname{def}} X^* \otimes_{\mathbb{Z}} \mathbb{Q}, \qquad X_*(\mathbb{Q}) =_{\operatorname{def}} X_* \otimes_{\mathbb{Z}} \mathbb{Q};$$

these are dual vector spaces by the rational extension of \langle, \rangle . The following definitions can be made for X^* or for $X_*(\mathbb{Q})$. An element $\xi \in X_*(\mathbb{Q})$ is regular if and only if

(1g)
$$\langle \alpha, \xi \rangle \neq 0 \qquad (\alpha \in R);$$

otherwise ξ is *singular*. To each regular element ξ one can attach a system of positive roots

(1h)
$$R^+(\xi) = \{\beta \in R \mid \langle \beta, \xi \rangle > 0\}.$$

We fix henceforth a system of positive roots, called just R^+ . Obviously R is the disjoint union of the positive and negative roots. A positive root is called *simple* if it is not the sum of two other positive roots. Write

(1i)
$$\Pi = \{ \alpha \in R^+ \mid \alpha \text{ is simple} \}$$

for the set of simple roots.

Proposition 1.1. Every positive root can be written uniquely as a sum with nonnegative integer coefficients of simple roots. The simple roots are a basis for the subspace of $X^*(\mathbb{Q})$ spanned by the roots, and a basis for the sublattice of X^* generated by the roots.

A weight $\mu \in X^*(\mathbb{Q})$ is called *dominant* if

(2) $\langle \mu, \alpha^{\vee} \rangle \ge 0 \qquad (\alpha \in R^+);$

it is enough to check this positivity for $\alpha \in \Pi$. In exactly the same way we can define *dominant coweights* in $X_*(\mathbb{Q})$.

Proposition 1.2. Every orbit of the Weyl group on $X^*(\mathbb{Q})$ contains exactly one dominant weight.

Definition 1.3. Suppose μ and λ belong to X^* . We write

 $\mu \preceq \lambda$

if λ is equal to μ plus a nonnegative integer combination of positive roots.

Here is one description of the weights of an irreducible representation.

Proposition 1.4. Suppose $\xi \in X^*$ is dominant, and $\pi(\xi)$ is the irreducible representation of G of highest weight ξ . Then the dominant weight $\mu \in X^*$ is a weight of $\pi(\xi)$ if and only if $\mu \leq \xi$.

If $\tau \in X^*$ is arbitrary, then τ is a weight of $\pi(\xi)$ if and only if the dominant conjugate $w\tau$ satisfies $w\tau \leq \xi$. In this case it is also true that $\tau \leq \xi$.

One has to be careful with quantifiers: if τ is not dominant, it can happen that $\tau \leq \xi$, but nevertheless τ is not a weight of $\pi(\xi)$.

Here is another description of the weights.

Proposition 1.5. Suppose $\xi \in X^*$ is dominant, and $\pi(\xi)$ is the irreducible representation of G of highest weight ξ . Then the set of weights of $\pi(\xi)$ is equal to the intersection of

convex hull of
$$W \cdot \xi \subset X^*(\mathbb{Q})$$

with the lattice coset

 $\xi + \mathbb{Z}R$

of translates of ξ by roots.

2