1. 18.757 Homework 4

Due Thursday, March 14.

1.1. Formal background. Suppose that (π, V_{π}) is a irreducible representation of G over a field k, and that $D_{\pi} = \text{Hom}_{G}(V_{\pi}, V_{\pi})$ is the commuting algebra (endowed with the usual "reverse multiplication," so that V_{π} is a right vector space over D_{π}). If W is any representation of G over k, the multiplicity space and isotypic space are

 $W^{\pi} = \operatorname{Hom}_{G}(V_{\pi}, W), \qquad W(\pi) = \text{largest sum of copies of } V_{\pi} \text{ in } W.$

Then W^{π} is a *left* vector space over D_{π} (by the right action on V_{π}), and there is an isomorphism

$$V_{\pi} \otimes_{D_{\pi}} W^{\pi} \to W(\pi), \qquad v \otimes A \mapsto A(v).$$

Using these (easy) facts, it's easy to make the following deductions.

- (1) There is a one-to-one correspondence between G-invariant subspaces of $W(\pi)$ and (left) D_{π} -subspaces of $W^{\pi}, S \mapsto S^{\pi}$.
- (2) There is a natural isomorphism

 $\operatorname{Hom}_{G}(W(\pi), U(\pi)) \simeq \operatorname{Hom}_{D_{\pi}}(W^{\pi}, U^{\pi});$

a map B on the left goes to the map on the right sending $A \in W^{\pi}$ to $B \circ A$. In class I discussed the corresponding definitions for quotients of W:

 $W_{\pi} = \operatorname{Hom}_{G}(W, V_{\pi}),$

 $W[\pi] = \lim (\text{quotients isom to } direct \ products \ of \ copies \ of \ V_{\pi}).$

Then W_{π} is a right vector space over D_{π} (by the right action on V_{π}). The natural map

 $W \to \operatorname{Hom}_{D_{\pi}}(W^{\pi}, V_{\pi}), \qquad w \mapsto (T \mapsto T(w))$

(for $T \in W_{\pi} = \operatorname{Hom}_{G}(W, V_{\pi})$) gives rise to an isomorphism

$$W[\pi] \to \operatorname{Hom}_{D_{\pi}}(W^{\pi}, V_{\pi}).$$

Notice that the right side is a direct product of copies of V_{π} , indexed by a D_{π} -basis of W^{π} .

1.2. Homework problems for Thursday, March 14. For these problems, Suppose V_{π} is a finite-dimensional irreducible representation of G, and D_{π} is as above. Recall that you proved in the second problem set that V_{π}^* is an irreducible representation of G; you may assume that the commuting algebra is again D_{π} , this time acting on the left on V_{π}^* .

- 1. Prove: $V_{\pi} \otimes_{D_{\pi}} V_{\pi}^*$ is an irreducible representation of $G \times G$.
- 2. Prove: Hom_{D_{π}} (V_{π}, V_{π}) is an irreducible representation of $G \times G$.

3. Calculate the commuting algebra of one of these two irreducible representations of $G \times G$.

4. Say as much as you can about the finite-dimensional irreducible k-representations of a product group $G \times H$, in terms of the irreducible representations of G and of H.