18.700 final review problems

I’ll try to post some solutions Saturday 12/14.

1. Let \(A \) be the \(4 \times 3 \) matrix of real numbers

\[
A = \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1 \\
\end{pmatrix}.
\]

a) Find the reduced row-echelon form of \(A \).

b) Let \(C \) be the column vector \(\begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix} \). Find all solutions \(X \) of the equation \(AX = C \).

c) Calculate the rank of \(A \).____

d) Does \(A \) have a left inverse?____ If so, find one.

e) Does \(A \) have a right inverse?____ If so, find one.

2. a) Give an example of a \(3 \times 2 \) real matrix \(A \) and a non-zero column vector \(C \in \mathbb{R}^3 \) with the property that the equation \(AX = C \) has infinitely many solutions.

b) What are the possible ranks for a matrix \(A \) satisfying the conditions in part (a)?____

3. In this problem the field is the complex numbers. Suppose \(A = \begin{pmatrix} 2 + i & 2 - i \\ 1 + i & 3 - i \end{pmatrix} \).

a) Find the characteristic equation of \(A \).

b) Find the eigenvalues of \(A \).

c) Find the eigenvectors of \(A \).

d) Find an invertible matrix \(P \) so that \(P^{-1}AP \) is diagonal.

4. Suppose that \(A \) is the \(4 \times 4 \) real matrix

\[
A = \begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1 \\
1 & -1 & 0 & 1 \\
1 & 0 & -1 & -1 \\
\end{pmatrix}.
\]

a) Calculate \(\det A \).

b) Calculate the matrix \(A^t A \).

c) Calculate \(\det A^t A \).
5.
 a) List all 2×3 matrices over the two-element field $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ which are in reduced row-echelon form and have rank 2. (There are exactly seven of them.)
 b) How many 2×3 matrices are there over the five-element field $\mathbb{Z}/5\mathbb{Z}$ which are in reduced row-echelon form and have rank 2?________

6.
 a) Find a 2×5 real row-echelon matrix A with the property that the three vectors

 $$
 \begin{pmatrix}
 -4 \\
 0 \\
 -2 \\
 0 \\
 1

 \end{pmatrix},
 \begin{pmatrix}
 -5 \\
 0 \\
 -6 \\
 1 \\
 0

 \end{pmatrix},
 \begin{pmatrix}
 -7 \\
 1 \\
 0 \\
 0

 \end{pmatrix}
 $$

 are a basis for the null space of A.

 b) Find a 2×5 real row-echelon matrix A with the property that the three vectors

 $$
 \begin{pmatrix}
 1 \\
 1 \\
 1 \\
 1

 \end{pmatrix},
 \begin{pmatrix}
 5 \\
 4 \\
 3 \\
 2

 \end{pmatrix},
 \begin{pmatrix}
 -1 \\
 1 \\
 1 \\
 1

 \end{pmatrix}
 $$

 are a basis for the null space of A.

7.
 a) Apply the Gram-Schmidt process to the three row vectors

 $$
 v_1 = (1, 1, 1, 1, 1), v_2 = (5, 4, 3, 2, 1), v_3 = (-1, 1, -1, 1, -1)
 $$

 in order to obtain orthogonal vectors w_1, w_2 and w_3 with the same span.

 b) Beginning with the vectors w_1, w_2, w_3 of part (a), find an orthogonal basis

 $$
 w_1, w_2, w_3, w_4, w_5
 $$

 of \mathbb{R}^5. (Hint: apply the Gram-Schmidt process to the five vectors

 $$
 w_1, w_2, w_3, (1, 0, 0, 0, 0), (0, 1, 0, 0, 0).
 $$

 c) Find a 2×5 real matrix B with the property that the three column vectors w_1^t, w_2^t, w_3^t are a basis for the null space of B. (Hint: you can use as rows of B some of the vectors you found in part (b).)

8. Suppose that A is an $n \times n$ matrix over any field k, with the property that $A^3 = A$.
 a) Prove that any eigenvalue of A must be 1, 0, or -1.
 b) Prove that A has an eigenvalue.
 c) Give an example with $k = \mathbb{Z}/2\mathbb{Z}$ and $n = 2$ to show that A does not have to be diagonalizable. (That is, find a two by two matrix A with entries in $\mathbb{Z}/2\mathbb{Z}$ such that $A^3 = A$, but A is not diagonalizable.)
 d) Suppose $k = \mathbb{R}$. Must A be diagonalizable? (This is too hard, and really a bit outside the scope of the course. But it’s only for practice.)