18.700 Problem Set 4 solutions

For the first problems, you may use the theorem I stated in class Tuesday October 7: there is a one-to-one correspondence

\[U \leftrightarrow \text{Row}(A) \]

between \(r \)-dimensional subspaces of \(F^n \) and \(r \times n \) reduced row-echelon matrices having exactly one pivot in each row. (That is, no rows of \(A \) are zero.)

1. (2 points) Suppose \(F = \mathbb{F}_5 \) is the field with five elements. How many one-dimensional subspaces of \(F^4 \) are there?

We have to list all the \(1 \times 3 \) reduced row-echelon matrices with a pivot; the pivot can be in the first, second, third, or fourth entry. The corresponding matrices are

\[
\begin{pmatrix}
1, x, y, z \\
0, 1, u, v \\
0, 0, 1, w
\end{pmatrix}, \quad \begin{pmatrix}
0, 1, u, v \\
0, 0, 1, w \\
0, 0, 0, 1
\end{pmatrix}, \quad \begin{pmatrix}
1, x, y, z \\
0, 0, 0, 1
\end{pmatrix}, \quad \begin{pmatrix}
0, 0, 0, 1
\end{pmatrix}
\]

with \(x, y, z, u, v \), and \(w \) arbitrary in \(\mathbb{F}_5 \). So there are \(5^3 = 125 \) of the first sort, \(5^2 = 25 \) of the second, 5 of the third, and one of the fourth, for a total of 156.

2. (3 points) Suppose \(F = \mathbb{F}_q \) is the field with \(q \) elements. How many two-dimensional subspaces of \(F^4 \) are there? (The answer will be a formula depending on \(q \), something like \(e^{2q} - \sin(q) + 7 \).)

We must list the \(2 \times 4 \) reduced row-echelon matrices with two pivots. The pivots can be in columns 1 and 2, or 1 and 3, or 1 and 4; or 2 and 3, or 2 and 4; or 3 and 4. The possibilities are

\[
\begin{pmatrix}
1 & 0 & x & y \\
0 & 1 & z & w
\end{pmatrix}, \quad \begin{pmatrix}
1 & x & 0 & y \\
0 & 0 & 1 & z
\end{pmatrix}, \quad \begin{pmatrix}
1 & x & y & 0 \\
0 & 0 & 0 & 1
\end{pmatrix};
\]

\[
\begin{pmatrix}
0 & 1 & 0 & x \\
0 & 0 & 1 & z
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 & x & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 & 1 & 0
\end{pmatrix}; \quad \begin{pmatrix}
0 & 0 & 0 & 1
\end{pmatrix}.
\]

For each type the variables \(x, y, ... \) can be arbitrary in \(F \), so the number of possibilities of each type is \(q \) to the number of variables. The total is therefore

\[
(q^4 + q^3 + q^2) + (q^2 + q) + 1 = q^4 + q^3 + 2q^2 + q + 1
\]

\[
= (q^2 + q + 1)(q^2 + 1)
\]

\[
= \frac{(q^3 + q^2 + q + 1)(q^2 + q + 1)}{(q + 1)(1)}.
\]

Either of the first two formulas on the right is fine as an answer. The last formula is what is called a “\(q \)-analogue” of the binomial coefficient

\[
\binom{4}{2} = \frac{4 \cdot 3}{2 \cdot 1},
\]

in the sense that the polynomial \(q^3 + q^2 + q + 1 \) is equal to 4 when \(q = 1 \), \(q^2 + q + 1 \) is equal to 3 when \(q = 1 \), and so on. The whole expression is therefore called a \(q \)-binomial coefficient:

\[
\binom{4}{2}_q = \frac{(q^3 + q^2 + q + 1)(q^2 + q + 1)}{(q + 1)(1)}.\]
The general definition is
\[
\binom{n}{r}_{q} = \text{def} \frac{(q^{n-1} + \cdots + 1)(q^{n-2} + \cdots + 1) \cdots (q^{n-r} + \cdots + 1)}{(q^{r-1} + \cdots + 1) \cdots (q + 1)(1)}.
\]

It turns out that \(\binom{n}{r}_{q} \) is a polynomial in \(q \) with nonnegative integer coefficients, and that its value at a prime power \(q \) is equal to the number of \(r \)-dimensional subspaces of \(\mathbb{F}_{q}^{n} \). This is the beginning of a very large idea in combinatorics: a lot of elementary counting problems (like counting the \(r \)-element subsets of an \(n \)-element set) have "\(q \)-analogues" which are related to linear algebra over the field \(\mathbb{F}_{q} \). Another way to say this is that linear algebra "over the field with one element" (which doesn’t really make sense) is basic combinatorics.

3. (6 points) Still assume \(F = \mathbb{F}_{q} \).

a) Suppose \(r \leq n \). Explain why the number of \(r \)-element linear independent lists \((v_1, \ldots, v_r)\) in \(F^n \) is equal to
\[
(q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{r-1}).
\]

For the list \((v_1)\) to be linearly independent means that \(v_1 \neq 0 \). The total number of choices is the number of nonzero element of \(F^n \), which is \(q^n - 1 \). Once \(v_1 \) is fixed, the list \((v_1, v_2)\) is linearly independent if and only if \(v_2 \) does not belong to the one-dimensional span of \(v_1 \). This rules out \(q \) vectors, so there are \(q^n - q \) choices for \(v_2 \). In the same way \((v_1, v_2, v_3)\) is linearly independent if and only if \(v_3 \) does not belong to the two-dimensional span of \(v_1 \) and \(v_2 \), which means that there are \(q^n - q^2 \) choices for \(v_3 \). Et cetera. (That is, induction on \(r \).)

b) How many invertible \(n \times n \) matrices with entries in \(F \) are there? (Hint: parts (a) and (b) have something to do with each other.)

According to the last problem set, an \(n \times n \) matrix is invertible if and only if its columns (the image of the standard basis of \(F^n \)) are a basis of \(F^n \); that is, if and only if they are linearly independent. (Then spanning is automatic since the dimension of \(F^n \) is \(n \).) So the number of invertible matrices is the number of lists of \(n \) linearly independent vectors in \(F^n \). This number was computed in part (a): it is
\[
(q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1}).
\]

c) Suppose \(A \) is a very large random square matrix with entries in the field \(\mathbb{F}_2 \). Is there a 30% chance that \(A \) is invertible?

The total number of \(n \times n \) matrices over \(\mathbb{F}_2 \) is \(2^n \cdot 2^n \cdots 2^n \) \((n \text{ factors}) \). The number which are invertible is \((2^n - 1)(2^n - 2) \cdots (2^n - 2^{n-1}) \). Therefore the fraction which are invertible is
\[
\frac{(2^n - 1)(2^n - 2) \cdots (2^n - 2^{n-1})}{2^n \cdot 2^n \cdots 2^n} = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right).
\]

This fraction is the chance that a random \(n \times n \) matrix over \(\mathbb{F}_2 \) is invertible. It’s .5 if \(n = 1 \), .375 if \(n = 2 \), and .328125 if \(n = 3 \). As \(n \) increases, this fraction gets
smaller and smaller: to pass from \(n - 1 \) to \(n \), you multiply by \(\left(1 - \frac{1}{n} \right) \), which is (a tiny bit) less than one. For \(n = 5 \), it’s

\[
\left(1 - \frac{1}{5} \right)^5 = 0.29800415,
\]

which is less than 30%. So the answer is no. (As \(n \) goes to infinity, these probabilities converge to an interesting number which is approximately 0.288788\ldots.)

4. (3 points) Axler, page 94, exercise 5; but \(F \) is allowed to be any field, and you need to see whether the answer depends on \(F \).

The eigenvalues 1 and \(-1\), and the corresponding eigenvectors \(\{(x, x)\} \) and \(\{(y, -y)\} \) “don’t change” with \(F \); but if \(F \) has characteristic 2 (like \(\mathbb{F}_2 \)) then there is only one eigenvalue \(1 = -1 \), and the two sets of eigenvectors become the same.

5. (3 points) Axler, page 94, exercise 7, with the same warning.

The eigenvalues are 0 and \(n \); but if \(n = 0 \) in \(F \) (that is, if the characteristic of \(F \) divides \(n \)) then there is only one eigenvalue. The eigenvectors for the eigenvalue 0 are

\[
\{(x_1, \ldots, x_n) \mid \sum x_i = 0\},
\]

an \(n - 1 \)-dimensional space; this is true for any \(F \). If \(n \neq 0 \) in \(F \), then the eigenvectors for eigenvalue \(n \) are the one-dimensional space

\[
\{(x, x, \ldots, x) \mid x \in F\}.
\]

If \(n = 0 \) in \(F \), then these are still eigenvectors (in fact they belong to the \((n - 1) \)-dimensional space written above) but (if \(n > 2 \)) they are not all the eigenvectors.

6. (5 points) Axler, page 95, exercise 11.

Outline: if \(v \neq 0 \) and \(STv = \lambda v \), then applying \(T \) to both sides gives \(TSTv = \lambda Tv \). If \(Tv \neq 0 \), this shows that \(\lambda \) is an eigenvalue of \(TS \).

If \(Tv = 0 \), then also \(STv = 0 \), so \(\lambda = 0 \). In this case what we know is that \(\text{null}(T) \neq 0 \), and what we want to deduce is that \(\text{null}(TS) \neq 0 \). By the rank plus nullity theorem, it is equivalent to show that \(TS \) is not surjective. But we know that \(\text{null}(T) \neq 0 \), so (rank plus nullity again) \(\text{range}(T) \neq V \), so

\[
\text{range}(TS) \subset \text{range}(T) \neq V.
\]

Therefore indeed \(TS \) is not surjective, as we wished to show.