18.440 Probability and Random Variables Fall Semester, 2003
Supplementary notes on continuous random variables

The text passes over in silence some basic questions related to continuous random
variables. The reason seems to be a desire to keep the calculus needed to single
variable as much as possible. That’s a laudable goal, but of course it’s not necessary
for MIT students, who have multiple integrals for breakfast. These notes are meant
to provide a little bit of additional background for the ideas in the text. I will still
be a bit sloppy. None of this can be done in a mathematically consistent and precise
way without Lebesgue integrals, whose very pronunciation can cause strong men
to weep. But I promise not to be too misleading.

The first question is where continuous random variables come from. A random
variable is a function defined on a sample space; but in Chapter 5, sample spaces
are almost nowhere to be found. So where do you get sample spaces on which
continuous random variables can be defined? Here’s one place ...

Example 1. Supppose that a < b are real numbers, and that S = [a,b] C R is
the interval from a to b. Suppose m is a non-negative real-valued function defined
on [a,b], and assume that f:m(s) ds = 1. We define a probability P on subsets
E C [a,b] by

_ SAMPLE SPACE
P(E) = /E‘m(S) ds. PROBABILITY

Here are some things to notice about this probability. First, the assumption on m
was included to make P(S) = 1. Second, the probability takes values between 0
and 1 (as it had better). Third, the probability of a single point (a single element
of S) is always zero, since [ m(s)ds = 0.

A random variable on S is a real-valued function X on [a,b]. The ezpected value
of X is

b
B(X) = / X (s)m(s) ds. SAMPLE SPACE

The second moment of X is

E(X?) = /b X?2(s)m(s)ds

and the variance of X is

b
Var(X) = E((X — E(X))?) = / (X(s) — E(X))’m(s)ds. ~ SAYTLESPACE
a
In fact you can define the expected value of any function g(X) of the random
variable X:

I hope these definitions look reasonable in light of the definition of “average
value” that you learned in calculus. Unfortunately, they look quite different from
the definitions in the text. In order to connect the two, we need to perform a change
of variables in these integrals. Before doing that, let’s look at an example just to
keep things concrete.

1



2

Example of Example 1. A passenger arrives at a bus stop at a time that is
uniformly distributed between 7:00 and 7:30. Buses depart at 7:05, 7:20, 7:35, and
so on. What is the probability of having to wait at least ten minutes for a bus?
How long should the passenger expect to wait on average?

Solution For this problem a reasonable sample space is the interval [0,30]: the
point s corresponds to arriving exactly s minutes after 7:00. (Being MIT passengers,
we keep track of times as real numbers: you can arrive at 10.13579 minutes after
7:00, in which case you missed the 7:10 bus (by more than eight seconds).) To say
that the arrival time is “uniformly distributed” over the half hour means that the
function m(s) = 1/30: the probability of arriving during some specified interval is
one thirtieth of its length (in minutes).

Waiting at least ten minutes for a bus means arriving in one of the intervals (5,10)
(missing the 7:05 bus, and waiting at least ten minutes for the 7:20) or (20,25]. The
probability is therefore

P(ten minute wait) = P((5,10] U (20, 25]) = 1/30(length) = 1/30(5 + 5) = 1/3.
The random variable that gives the actual waiting time is

5—s, ifse]l0,5];
X(s)=14 20—s, ifse(5,20]
35—s, if s € (20,30].

The expected value of X is therefore

1 30
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= 30(5 /2 +15%/2 +10°) 30(225) 7.5

So the expected waiting time (with buses every fifteen minutes) is seven and a half
minutes. Not terrifically surprising.

Relating Example 1 expected values to book’s expected values. The text
says that a random variable X has “probability density function” f if for any set
B of real numbers,

P(X € B) = / (@) da. BOOK 5.1.1
B

Here is a slightly less formal way to say the same thing: for any real number z, and
any small Az,

Pl <X <ot 80)~ f(0)ha ot

So let’s look now at the setting of Example 1 (particularly the formula for expecta-
tion), and try to change variables in the integral over S. We want to go from the old
variable s to the new variable X (s). Say that X takes values in the interval [c, d].
Think about breaking up the integral into pieces corresponding to little ranges of



3

values of X; that is, chopping up [c,d] into little pieces. What’s the contribution
of values of X between x and x + Ax? It’s

/ X (s)m(s) ds.
z<X(s)<z+Az

The function X (s) stays close to the constant x here, so this integral is approxi-
mately

;t:/ m(s)ds =zP(x < X <z + Ax).
z<X(s)<z+Az

According to the rephrased definition of density functions, this last probability is
approximately f(z)Az. Putting it all together gives

/ X(s)m(s)ds ~ zf(x)Ax.
z<X(s)<z+Az

Now add up these formulas over a lot of little intervals of values of X (s). On the
left the pieces add up to the integral of X (s)m(s) over S. On the right, the pieces
give a Riemann sum for fcd zf(z)dz. The conclusion (taking limits as Az goes to
zero) is

/a " X (sym(s) ds = / et (@) e

The formula on the left is the “sample space” formula for expected values, from
Example 1 above. The formula on the right is the book’s definition of expected
value, from page 191. (I assumed that X took values in the finite range [c,d],
in order to reduce the mathematical sloppiness in the argument. That’s why the
integral here goes from c¢ to d, while the one in the book goes from —oo to oco.

Computationally this discussion has left one serious question hanging: in the
setting of Example 1, how can you hope to find a probability density function
satisfying the requirement BOOK 5.1.1 REPHRASED?

Computing probability density functions in Example 1. Suppose that the
function X (s) has a derivative (except for finitely many bad values of s), and that
the derivative is not zero (at except for another finite bad set). Fix some value of
x of X (s). The first problem is to find when X takes this value; that is, to look for
solutions of X (s) = z. Suppose the solutions are

81,82,--. 5,87 € [a,b];
that is, that
X(si))==z, (i=1,...,r), X(s) £z (s¢{si})
If ¢ is small, then the linear approximation to X near s; says
X(s;+t) ~z+tX'(s;).
This suggests that

{s€ S| X(s) €[r,z+ Az]} ~ {s € S| s between s; and s; + Az/X'(s;)}.
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(Of course this only makes sense when all the X'(s;) are defined and non-zero, but
we're assuming that’s usually true.)

Now the ith interval in this last formula has length Axz/|X'(s;)|. According
to the formula SAMPLE SPACE EXPECTATION from Example 1, its probabil-
ity is approximately (Az)m(s;)/|X'(s;)|- Putting all these intervals together, we
conclude that

Pz < X(s) <z + Az) ~ AmZm )/ X" (54)]-

Comparing this formula with the definition of density functions says

Z m(si) /| X" (s:)].
Keeping in mind where the s; came from gives

f((li') _ Z m(s)/|X'(s)| DENSITY FUNCTION
- . FORMULA
s€S, X (s)=z

Example of computing probability density functions. Suppose we are in the
setting of Example of Example 1 (waiting for buses), and we want to compute
a probability density function for the waiting time random variable X (s). This
random variable takes values between 0 and 15, so we need to compute f(x) for

€ [0,15]. The function X (s) has a derivative everywhere except at s = 5 and
s = 20; the derivative is always —1. The DENSITY FUNCTION FORMULA above
says

f@y= Y me)/IX'(s)

s€[0,30],f(s)==

The derivative here is always 1, and m(s) is always 1/30, so
f(z) = (1/30)(number of s such that f(s) = z.)

So we need (for fixed z € [0,15]) to count the solutions of f(s) = z. For that we
refer to the formulas for X (s) in the example. If z € [0,5), then the solutions are
5—x and 20 — z. If x € (5,15), then the solutions are 20 —z and 35 —z. If z =5
there are three solutions (s = 0, s = 15, and s = 30) and if x = 15 there are none;
but these possibilities have probability zero. The conclusion is that the number of
solutions is (usually) two, and the probability density function for the waiting time
random variable is

f@)=1/15  (z €[0,15]).

The whole point of these notes was supposed to be that you ate multiple integrals
for breakfast; but I haven’t used any multiple integrals yet. So here they are ...
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Example 2. . Supppose that S C R” is some region in n-dimensional space. (You
can perfectly well take n = 2 or 3 if you prefer.) Suppose m is a non-negative
real-valued function defined on S, and assume that [¢m(s)ds = 1. We define a
probability P on subsets £ C S by

_ SAMPLE SPACE
P(E) = /Em(S) ds. PROBABILITY

Here are some things to notice about this probability. First, the assumption on m
was included to make P(S) = 1. Second, the probability takes values between 0
and 1 (as it had better). Third, the probability of a “lower dimensional subset”
(like a line in R? is always zero.

A random variable on S is a real-valued function X on [a,b]. The expected value
of X is

. SAMPLE SPACE
E(X) —/SX(S)m(S)dS- EXPECTATION

The second moment of X is
E(X?) = / X?(s)m(s)ds
S
and the variance of X is

Var(X) = E((X - B(X))?) = /S (X(s) — B(X))?m(s)ds. ~ SAMPLE SPACE

A lot of what I said about the sample space [a,b] carries over to this setting
without any change. Even the section Relating Example 1 expected values
to book’s expected values can be carried over pretty easily. The only difference
is that when we looked at the part of [a,b] where X is close to z, we got a nice
little collection of short intervals (obtained by fattening up the points s where
X(s) = z). When we look in R” at the set where X is equal to z, we get a
(possibly very complicated) (n — 1)-dimensional surface; and fattening it up is even
more complicated. But there is still an analogue of the formula we got for a density
function:

f(z) = /{ ey TONX () s PENSITY FUNOTION

The integral extends over the surface defined by X (s) = s. The gradient VX is a
vector; what appears here is the length of the gradient. I won’t try to write precise
conditions making this true: at least we need X to have a non-zero derivative most
places, or the formula doesn’t even make sense.



