Independence, Covariance and Correlation

18.05 Spring 2018

<table>
<thead>
<tr>
<th>X \ Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>
Independence, Covariance, Correlation

Events A and B are independent if

$$P(A \cap B) = P(A)P(B).$$

Random variables X and Y are independent if

$$F(x, y) = F_X(x)F_Y(y).$$

Discrete random variables X and Y are independent if

$$p(x_i, y_j) = p_X(x_i)p_Y(y_j).$$

Continuous random variables X and Y are independent if

$$f(x, y) = f_X(x)f_Y(y).$$
Concept question: independence I

Roll two dice: $X =$ value on first, $Y =$ value on second

<table>
<thead>
<tr>
<th>$X \setminus Y$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>$p(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
</tbody>
</table>

| $p(y_j)$ | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1 | 1 |

Are X and Y independent? 1. Yes 2. No

answer: 1. Yes. Every cell probability is the product of the marginal probabilities.
Concept question: independence II

Roll two dice: \(X = \text{value on first}, \quad T = \text{sum} \)

<table>
<thead>
<tr>
<th>(X \backslash T)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>(p(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
</tbody>
</table>

\[p(y_j) \quad 1/36 \quad 2/36 \quad 3/36 \quad 4/36 \quad 5/36 \quad 6/36 \quad 5/36 \quad 4/36 \quad 3/36 \quad 2/36 \quad 1/36 \quad 1 \]

Are \(X \) and \(Y \) independent? 1. Yes 2. No

answer: 2. No. The cells with probability zero are clearly not the product of the marginal probabilities.
Concept Question

Among the following pdf’s which are independent? (Each of the ranges is a rectangle chosen so that \(\int \int f(x, y) \, dx \, dy = 1. \))

(i) \(f(x, y) = 4x^2y^3. \)

(ii) \(f(x, y) = \frac{1}{2}(x^3y + xy^3). \)

(iii) \(f(x, y) = 6e^{-3x-2y} \)

Put a 1 for independent and a 0 for not-independent.

(a) 111 (b) 110 (c) 101 (d) 100

(e) 011 (f) 010 (g) 001 (h) 000

answer: (c). Explanation on next slide.
(i) **Independent.** The variables can be separated: the marginal densities are \(f_X(x) = ax^2 \) and \(f_Y(y) = by^3 \) for some constants \(a \) and \(b \) with \(ab = 4 \).

(ii) **Not independent.** \(X \) and \(Y \) are not independent because there is no way to factor \(f(x, y) \) into a product \(f_X(x)f_Y(y) \).

(iii) **Independent.** The variables can be separated: the marginal densities are \(f_X(x) = ae^{-3x} \) and \(f_Y(y) = be^{-2y} \) for some constants \(a \) and \(b \) with \(ab = 6 \).
Covariance

Measures the degree to which two random variables vary together, e.g. height and weight of people.

X, Y random variables with means μ_X and μ_Y.

$$\text{Cov}(X, Y) = \text{def} \ E((X - \mu_X)(Y - \mu_Y)).$$

- **Vary together** might mean X is usually bigger than μ_X when Y is bigger than μ_Y, and vice versa. In this case $(X - \mu_X)(Y - \mu_Y)$ is usually positive, so $\text{Cov}(X, Y)$ is positive.

- **Vary together** might mean X is usually bigger than μ_X when Y is smaller than μ_Y, and vice versa. In this case $(X - \mu_X)(Y - \mu_Y)$ is usually negative, so $\text{Cov}(X, Y)$ is negative.

- If X and Y don’t vary together, then sign of $(X - \mu_X)$ tells nothing about sign of $(Y - \mu_Y)$. In this case $(X - \mu_X)(Y - \mu_Y)$ can be both positive and negative, so $\text{Cov}(X, Y)$ might be zero or small.
Properties of covariance

Properties

1. \(\text{Cov}(aX + b, cY + d) = ac \text{Cov}(X, Y) \) for constants \(a, b, c, d \).

2. \(\text{Cov}(X_1 + X_2, Y) = \text{Cov}(X_1, Y) + \text{Cov}(X_2, Y) \).

3. \(\text{Cov}(X, X) = \text{Var}(X) \)

4. \(\text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y \).

5. If \(X \) and \(Y \) are independent then \(\text{Cov}(X, Y) = 0 \).

6. **Warning** The converse is not true: if covariance is 0, the variables might not be independent.
Concept question

Suppose we have the following joint probability table.

<table>
<thead>
<tr>
<th>Y\X</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>p(y_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
</tr>
<tr>
<td>p(x_i)</td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
<td>1</td>
</tr>
</tbody>
</table>

At your table work out the covariance $\text{Cov}(X, Y)$.

Because the covariance is 0 we know that X and Y are independent

1. True 2. False

Key point: covariance measures the linear relationship between X and Y. It can completely miss a quadratic or higher order relationship.
Flip a fair coin 12 times.

Let $X =$ number of heads in the first 7 flips

Let $Y =$ number of heads on the last 7 flips.

Compute Cov(X, Y),
Solution

Use the properties of covariance.

\(X_i = \) the number of heads on the \(i^{\text{th}} \) flip. (So \(X_i \sim \text{Bernoulli}(0.5) \).)

\[
X = X_1 + X_2 + \ldots + X_7 \quad \text{and} \quad Y = X_6 + X_7 + \ldots + X_{12}.
\]

We know \(\text{Var}(X_i) = 1/4 \). Therefore using Property 2 (linearity) of covariance

\[
\text{Cov}(X, Y) = \text{Cov}(X_1 + X_2 + \ldots + X_7, X_6 + X_7 + \ldots + X_{12})
\]

\[
= \text{Cov}(X_1, X_6) + \text{Cov}(X_1, X_7) + \text{Cov}(X_1, X_8) + \ldots + \text{Cov}(X_7, X_{12})
\]

Since the different tosses are independent we know

\[
\text{Cov}(X_1, X_6) = 0, \quad \text{Cov}(X_1, X_7) = 0, \quad \text{Cov}(X_1, X_8) = 0, \quad \text{etc.}
\]

Looking at the expression for \(\text{Cov}(X, Y) \) there are only two non-zero terms

\[
\text{Cov}(X, Y) = \text{Cov}(X_6, X_6) + \text{Cov}(X_7, X_7) = \text{Var}(X_6) + \text{Var}(X_7) = \frac{1}{2}.
\]
Correlation

Like covariance, but removes scale.
The correlation coefficient between X and Y is defined by

$$\text{Cor}(X, Y) = \rho = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}.$$

1. $\rho =$ covariance of standardized versions of X and Y.
2. ρ is dimensionless (it’s a ratio).
3. $-1 \leq \rho \leq 1$.
4. $\rho = 1$ if and only if $Y = aX + b$ with $a > 0$.
5. $\rho = -1$ if and only if $Y = aX + b$ with $a < 0$.
Real-life correlations

- Over time, amount of ice cream consumption is correlated with number of pool drownings.
- In 1685 (and today) being a student is the most dangerous profession.
- In 90% of bar fights ending in a death the person who started the fight died.
- Hormone replacement therapy (HRT) is correlated with a lower rate of coronary heart disease (CHD).

Discussion is on the next slides.
Real-life correlations discussion

- Ice cream does not cause drownings. Both are correlated with summer weather.

- In a study in 1685 of the ages and professions of deceased men, it was found that the profession with the lowest average age of death was “student.” But, being a student does not cause you to die at an early age. Being a student means you are young. This is what makes the average of those that die so low.

- A study of fights in bars in which someone was killed found that, in 90% of the cases, the person who started the fight was the one who died.

 Of course, it’s the person who survived telling the story.

Continued on next slide
In a widely studied example, numerous epidemiological studies showed that women who were taking combined hormone replacement therapy (HRT) also had a lower-than-average incidence of coronary heart disease (CHD), leading doctors to propose that HRT was protective against CHD. But randomized controlled trials showed that HRT caused a small but statistically significant increase in risk of CHD. Re-analysis of the data from the epidemiological studies showed that women undertaking HRT were more likely to be from higher socio-economic groups (ABC1), with better-than-average diet and exercise regimens. The use of HRT and decreased incidence of coronary heart disease were coincident effects of a common cause (i.e. the benefits associated with a higher socioeconomic status), rather than cause and effect, as had been supposed.
Correlation is not causation

Edward Tufte: ”Empirically observed covariation is a necessary but not sufficient condition for causality.”
Overlapping sums of uniform random variables

We made two random variables X and Y from overlapping sums of uniform random variables

For example:

$$X = X_1 + X_2 + X_3 + X_4 + X_5$$

$$Y = X_3 + X_4 + X_5 + X_6 + X_7$$

These are sums of 5 of the X_i with 3 in common.

If we sum r of the X_i with s in common we name it (r, s).

Below are a series of scatterplots produced using R.
Scatter plots

(1, 0) cor=0.00, sample_cor=-0.07

(2, 1) cor=0.50, sample_cor=0.48

(5, 1) cor=0.20, sample_cor=0.21

(10, 8) cor=0.80, sample_cor=0.81
Concept question

Toss a fair coin $2n + 1$ times. Let X be the number of heads on the first $n + 1$ tosses and Y the number on the last $n + 1$ tosses.

If $n = 1000$ then $\text{Cov}(X, Y)$ is:

(a) 0 (b) 1/4 (c) 1/2 (d) 1
(e) More than 1 (f) tiny but not 0

answer: 2. 1/4. This is computed in the answer to the next table question.
Board question

Toss a fair coin $2n + 1$ times. Let X be the number of heads on the first $n + 1$ tosses and Y the number on the last $n + 1$ tosses.

Compute $\text{Cov}(X, Y)$ and $\text{Cor}(X, Y)$.

As usual let $X_i =$ the number of heads on the i^{th} flip, i.e. 0 or 1. Then

$$X = \sum_{1}^{n+1} X_i, \quad Y = \sum_{n+1}^{2n+1} X_i$$

X is the sum of $n + 1$ independent Bernoulli$(1/2)$ random variables, so

$$\mu_X = E(X) = \frac{n + 1}{2}, \quad \text{and} \quad \text{Var}(X) = \frac{n + 1}{4}.$$

Likewise, $\mu_Y = E(Y) = \frac{n + 1}{2}$, and $\text{Var}(Y) = \frac{n + 1}{4}$.

Continued on next slide.
Solution continued

Now,

\[\text{Cov}(X, Y) = \text{Cov} \left(\sum_{1}^{n+1} X_i \sum_{n+1}^{2n+1} X_j \right) = \sum_{i=1}^{n+1} \sum_{j=n+1}^{2n+1} \text{Cov}(X_i; X_j). \]

Because the \(X_i \) are independent the only non-zero term in the above sum is \(\text{Cov}(X_{n+1}X_{n+1}) = \text{Var}(X_{n+1}) = \frac{1}{4} \) Therefore,

\[\text{Cov}(X, Y) = \frac{1}{4}. \]

We get the correlation by dividing by the standard deviations.

\[\text{Cor}(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{1/4}{(n+1)/4} = \frac{1}{n+1}. \]

This makes sense: as \(n \) increases the correlation should decrease since the contribution of the one flip they have in common becomes less important.