Parametric Bootstrapping
18.05 Spring 2017
Parametric bootstrapping

Use the estimated parameter to estimate the variation of estimates of the parameter!

- Data: x_1, \ldots, x_n drawn from a parametric distribution $F(\theta)$.
- Estimate θ by a statistic $\hat{\theta}$.
- **Generate many bootstrap samples from** $F(\hat{\theta})$.
- Compute the statistic θ^* for each bootstrap sample.
- Compute the **bootstrap difference**
 \[\delta^* = \theta^* - \hat{\theta}. \]
- Use the quantiles of δ^* to approximate quantiles of $\delta = \hat{\theta} - \theta$
- Set a confidence interval $[\hat{\theta} - \delta^*_{1-\alpha/2}, \hat{\theta} - \delta^*_{\alpha/2}]$
Parametric sampling in R

Data from binomial(15, θ) for an unknown θ
x = c(3, 5, 7, 9, 11, 13)

binomSize = 15 # known size of binomial
n = length(x) # sample size

thetahat = mean(x)/binomSize # MLE for θ
nboot = 5000 # number of bootstrap samples to use

nboot parametric samples of size n; organize in a matrix
tmpdata = rbinom(n*nboot, binomSize, thetahat)
bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot)

Compute bootstrap means thetahat* and differences delta*

thetahatstar = colMeans(bootstrapsample)/binomSize
deltastar = thetahatstar - thetahat

Find quantiles and make the bootstrap confidence interval
d = quantile(deltastar, c(.1,.9))

CI = thetahat - c(d[2], d[1])
Data: 6 5 5 5 7 4 \sim \text{binomial}(8, \theta)

1. Estimate \(\theta \).

2. Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for \(\theta \).

(Try this without looking at your notes. We’ll show the previous slide at the end)
Preview of linear regression

- Fit lines or polynomials to bivariate data
- Model: \(y = f(x) + E \)
 - \(f(x) \) function, \(E \) random error.
- Example: \(y = ax + b + E \)
- Example: \(y = ax^2 + bx + c + E \)
- Example: \(y = e^{ax+b+E} \) (Compute with \(\ln(y) = ax + b + E \).)