Bootstrapping 18.05 Spring 2018

- Leftover from 5/2 : binomial confidence intervals
- Bootstrap terminology
- Bootstrap principle
- Empirical bootstrap
- Parametric bootstrap

Board question: exact binomial confidence interval

Use this table of binomial $(8,\theta)$ probabilities to:

- Color the (two-sided) rejection region with significance level 0.10 for each value of θ.
- **②** Given x = 7, find the 90% confidence interval for θ .
- **③** Repeat for x = 4.

$\theta \setminus x$	0	1	2	3	4	5	6	7	8
.1	0.430	0.383	0.149	0.033	0.005	0.000	0.000	0.000	0.000
.3	0.058	0.198	0.296	0.254	0.136	0.047	0.010	0.001	0.000
.5	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
.7	0.000	0.001	0.010	0.047	0.136	0.254	0.296	0.198	0.058
.9	0.000	0.000	0.000	0.000	0.005	0.033	0.149	0.383	0.430

Solution

For each θ , the non-rejection region is blue, the rejection region is red. In each row, the rejection region has probability at most $\alpha = 0.10$.

$\theta \setminus x$	0	1	2	3	4	5	6	7	8
.1	0.430	0.383	0.149	0.033	0.005	0.000	0.000	0.000	0.000
.3	0.058	0.198	0.296	0.254	0.136	0.047	0.010	0.001	0.000
.5	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
.7	0.000	0.001	0.010	0.047	0.136	0.254	0.296	0.198	0.058
.9	0.000	0.000	0.000	0.000	0.005	0.033	0.149	0.383	0.430

For x = 7 the 90% confidence interval for θ is [0.7, 0.9]. These are the values of θ we wouldn't reject as null hypotheses. They are the blue entries in the x = 7 column.

For x = 4 the 90% confidence interval for θ is [0.3, 0.7].

Board question: polling 20 instead of 8

Use this table of $pbinom(x, 20, \theta)$ to:

- **Color** the (two-sided) rejection region with significance level 0.05 for each value of θ .
- **2** Given x = 3, find the 95% confidence interval for θ .

③ Repeat for x = 10.

$\theta \setminus x$	0	1	2	3	4	5	6	7	8	9	10
.1	.122	.392	.677	.867	.957	.989	.998	1	1	1	1
.2	.012	.069	.206	.411	.630	.804	.913	.968	.990	.997	.999
.3	.001	.008	.036	.107	.238	.416	.608	.772	.887	.952	.983
.4	0	.001	.004	.016	.051	.126	.25	.416	.596	.755	.872
.5	0	0	0	.001	.006	.021	.058	.132	.252	.412	.588
.6	0	0	0	0	0	.002	.006	.021	.056	.128	.245
.7	0	0	0	0	0	0	0	.001	.005	.017	.048
.8	0	0	0	0	0	0	0	0	0	.001	.003
.9	0	0	0	0	0	0	0	0	0	0	0

Solution

For each θ , the non-rejection region is blue, the rejection region is red. In each row, the rejection region has probability at most $\alpha = 0.05$.

$\theta \setminus x$	0	1	2	3	4	5	6	7	8	9	10
.1	.122	.392	.677	.867	.957	.989	.998	1.000	1.000	1.000	1.000
.2	.012	.069	.206	.411	.630	.804	.913	.968	.990	.997	.999
.3	.001	.008	.036	.107	.238	.416	.608	.772	.887	.952	.983
.4	.000	.001	.004	.016	.051	.126	.250	.416	.596	.755	.872
.5	.000	.000	.000	.001	.006	.021	.058	.132	.252	.412	.588
.6	.000	.000	.000	.000	.000	.002	.006	.021	.056	.128	.245
.7	.000	.000	.000	.000	.000	.000	.000	.001	.005	.017	.048
.8	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.003
.9	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

For x = 3 the 95% confidence interval for θ is [0.1, 0.3].

These are the values of θ we wouldn't reject as null hypotheses.

For x = 10 the 95% confidence interval for θ is [0.3, 0.7].

Conservative normal confidence interval for θ is

 $x/20 \pm 1/\sqrt{20} = x/20 \pm 0.22$

Exact confidence intervals computed here are a bit smaller.

Empirical distribution of data

Data: x_1, x_2, \ldots, x_n (independent)

Example 1. Data: 1, 2, 2, 3, 8, 8, 8.

Example 2.

The true and empirical distribution are approximately equal.

Resampling

- Sample (size 6): 1 2 1 5 1 12
- Resample (size *m*): Randomly choose *m* samples with replacement from the original sample.
- Resample probabilities = empirical distribution: P(1) = 1/2, P(2) = 1/6 etc.
- E.g. resample (size 10): 5 1 1 1 12 1 2 1 1 5
- A bootstrap (re)sample is always the same size as the original sample:
- Bootstrap sample (size 6): 5 1 1 1 12 1

Bootstrap principle for the mean

- Data $x_1, x_2, \ldots, x_n \sim F$ with true mean μ .
- *F*^{*} = empirical distribution (resampling distribution).
- $x_1^*, x_2^*, \ldots, x_n^*$ resample same size data

Bootstrap Principle: (really holds for any statistic)

• $F^* \approx F$ computed from resample; \overline{x}^* for mean.

2
$$\delta^* = \overline{x}^* - \overline{x} \approx \overline{x} - \mu = \text{variation of } \overline{x}$$
.

Oritical values:

$$\delta_{1-\alpha/2}^* \le \overline{x}^* - \overline{x} \le \delta_{\alpha/2}^*$$

except for α extreme cases.

• Bootstrap confidence interval for μ is

$$\overline{\mathbf{x}} - \delta^*_{\alpha/2} \le \mu \le \overline{\mathbf{x}} - \delta^*_{1-\alpha/2}$$

Empirical bootstrap confidence intervals

Use the data to estimate the variation of estimates based on the data!

- Data: x_1, \ldots, x_n drawn from a distribution F.
- Estimate a feature θ of F by a statistic $\hat{\theta}$.
- Generate many bootstrap samples x_1^*, \ldots, x_n^* .
- Compute the statistic θ^* for each bootstrap sample.
- Compute the bootstrap difference $\delta^* = \theta^* \hat{\theta}$.
- Use quantiles of δ^* to approximate quantiles of $\delta = \hat{\theta} \theta$.
- Construct a confidence interval $[\hat{\theta} \delta^*_{\alpha/2}, \hat{\theta} \delta^*_{1-\alpha/2}]$ (By $\delta^*_{\alpha/2}$ we mean the $\alpha/2$ critical value.)

Concept question

Consider finding bootstrap confidence intervals for

I. the mean II. the median III. 47th percentile.

Which is easiest to find?

A. I B. II C. III D. I and II

E. II and III F. I and III G. I and II and III

answer: G. The program is essentially the same for all three statistics. All that needs to change is the code for computing the specific statistic.

Board question

Data: 3 8 1 8 3 3

Bootstrap samples (each column is one bootstrap trial):

Compute a bootstrap 80% confidence interval for the mean.

Compute a bootstrap 80% confidence interval for the median.

Solution: mean

 $\bar{x} = 4.33$

 \bar{x}^* : 4.33, 4.00, 2.83, 4.83, 4.33, 4.67, 4.33, 4.00 δ^* : 0.00, -0.33, -1.50, 0.50, 0.00, 0.33, 0.00, -0.33 Sorted δ^* : -1.50, -0.33, -0.33, 0.00, 0.00, 0.00, 0.33, 0.50 So, $\delta^*_{0.0} = -1.50$, $\delta^*_{0.1} = 0.37$.

(For $\delta_{0.1}^*$ we interpolated between the top two values –there are other reasonable choices. In R see the quantile() function.)

80% bootstrap CI for mean: $[\bar{x} - 0.37, \bar{x} + 1.50] = [3.97, 5.83]$

Solution: median

(For $\delta_{0.1}^*$ we interpolated between the top two values –there are other reasonable choices. In R see the quantile() function.)

80% bootstrap CI for median: $[\bar{x} - 0.5, \bar{x} + 1.0] = [2.5, 4.0]$

Empirical bootstrapping in R

x = c(30, 37, 36, 43, 43)	42	,43,43,4	16,4	1,42) #	original	. sa	ample
n = length(x)	#	sample	siz	ze			
xbar = mean(x)	#	sample	mea	an			
nboot = 5000	#	number	of	bootstrap	samples	to	use

```
# Generate nboot empirical samples of size n
# and organize in a matrix
tmpdata = sample(x,n*nboot, replace=TRUE)
bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot)
```

```
# Compute bootstrap means xbar* and differences delta*
xbarstar = colMeans(bootstrapsample)
deltastar = xbarstar - xbar
```

```
# Find the .1 and .9 quantiles and make
# the bootstrap 80% confidence interval
ci = quantile(deltastar, c(.1,.9))
ci = xbar - c(d[2], d[1])
```

Parametric bootstrapping

Use the estimated parameter to estimate the variation of estimates of the parameter!

- Data: x_1, \ldots, x_n drawn from a parametric distribution $F(\theta)$.
- Estimate θ by a statistic $\hat{\theta}$.
- Generate many bootstrap samples from $F(\hat{\theta})$.
- Compute the statistic θ^* for each bootstrap sample.
- Compute the bootstrap difference $\delta^* = \theta^* \hat{\theta}$.
- Use crit values of δ^* to approximate crit values of $\delta = \hat{\theta} \theta$.
- Set a bootstrap confidence interval $[\hat{ heta} \delta^*_{\alpha/2}, \, \hat{ heta} \delta^*_{1-\alpha/2}]$