Agenda

- Exam on Monday April 30.
- Practice questions posted.
- Friday’s class is for review (no studio)

Today

- Review of critical values and quantiles.
- Computing z, t, χ^2 confidence intervals for normal data.
- Conceptual view of confidence intervals.
- Confidence intervals for polling (Bernoulli distributions).
Review of critical values and quantiles

- **Quantile**: left tail $P(X < q_\alpha) = \alpha$
- **Critical value**: right tail $P(X > c_\alpha) = \alpha$

Letters for critical values:

- z_α for $N(0, 1)$
- t_α for $t(n)$
- c_α, x_α all purpose

q_α and z_α for the standard normal distribution.
Concept question

1. $z_{0.025} =$

 (a) -1.96 (b) -0.95 (c) 0.95 (d) 1.96 (e) 2.87
Concept question

1. \(z_{025} = \)

 (a) -1.96 (b) -0.95 (c) 0.95 (d) 1.96 (e) 2.87

2. \(-z_{16} = \)

 (a) -1.33 (b) -0.99 (c) 0.99 (d) 1.33 (e) 3.52
Computing confidence intervals from normal data

Suppose the data x_1, \ldots, x_n is drawn from $\text{N}(\mu, \sigma^2)$
Confidence level $= 1 - \alpha$

- **z confidence interval for the mean (σ known)**

\[
\left[\bar{x} - \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}, \quad \bar{x} + \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}} \right]
\]

- **t confidence interval for the mean (σ unknown)**

\[
\left[\bar{x} - \frac{t_{\alpha/2} \cdot s}{\sqrt{n}}, \quad \bar{x} + \frac{t_{\alpha/2} \cdot s}{\sqrt{n}} \right]
\]

- **χ^2 confidence interval for σ^2**

\[
\left[\frac{n-1}{c_{\alpha/2}} s^2, \quad \frac{n-1}{c_{1-\alpha/2}} s^2 \right]
\]

- t and χ^2 have $n - 1$ degrees of freedom.
Suppose \(x_1, \ldots, x_n \sim N(\mu, \sigma^2) \) with \(\sigma \) known.

The rule-of-thumb 95% confidence interval for \(\mu \) is:

\[
\left[\bar{x} - 2 \frac{\sigma}{\sqrt{n}}, \quad \bar{x} + 2 \frac{\sigma}{\sqrt{n}} \right]
\]

A more precise 95% confidence interval for \(\mu \) is:

\[
\left[\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \quad \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}} \right]
\]
The data 4, 1, 2, 3 is drawn from $N(\mu, \sigma^2)$ with μ unknown.

1. Find a 90% z confidence interval for μ, given that $\sigma = 2$.

For the remaining parts, suppose σ is unknown.

2. Find a 90% t confidence interval for μ.

3. Find a 90% χ^2 confidence interval for σ^2.

4. Find a 90% χ^2 confidence interval for σ.

5. Given a normal sample with $n = 100$, $\bar{x} = 12$, and $s = 5$, find the rule-of-thumb 95% confidence interval for μ.
Conceptual view of confidence intervals

- Computed from data \Rightarrow **interval statistic**
- ‘Estimates’ a parameter of interest \Rightarrow **interval estimate**
- Width = measure of precision
- Confidence level = measure of performance
- Confidence intervals are a frequentist method.
 - No need for a prior, only uses likelihood.
 - Frequentists **don’t assign probabilities to hypotheses**
 - A 95% confidence interval of $[1.2, 3.4]$ for μ **doesn’t mean** that $P(1.2 \leq \mu \leq 3.4) = 0.95$.
- We will compare with Bayesian probability intervals later.

Applet:
http://mathlets.org/mathlets/confidence-intervals/
The quantities n, $c = \text{confidence}$, \bar{x}, σ all appear in the z confidence interval for the mean.

How does the width of a confidence interval for the mean change if:

1. we increase n and leave the others unchanged?
2. we increase c and leave the others unchanged?
3. we increase μ and leave the others unchanged?
4. we increase σ and leave the others unchanged?

(A) it gets wider (B) it gets narrower (C) it stays the same.
Intervals and pivoting

\bar{x}: sample mean (statistic)

μ_0: hypothesized mean (not known)

Pivoting: \bar{x} is in the interval $\mu_0 \pm 2.3 \iff \mu_0$ is in the interval $\bar{x} \pm 2.3$.

```
-2 -1 0 1 2 3 4

\mu_0 ± 1
\bar{x} ± 1
\mu_0 ± 2.3
\bar{x} ± 2.3
```

Algebra of pivoting:

$$\mu_0 - 2.3 < \bar{x} < \mu_0 + 2.3 \iff \bar{x} + 2.3 > \mu_0 > \bar{x} - 2.3.$$
Suppose $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \sigma^2)$ with σ known.

Consider two intervals:

1. The z confidence interval around \bar{x} at confidence level $1 - \alpha$.
2. The z non-rejection region for $H_0 : \mu = \mu_0$ at significance level α.

Compute and sketch these intervals to show that:

$$\mu_0 \text{ is in the first interval} \iff \bar{x} \text{ is in the second interval.}$$
Solution

Confidence interval: \(\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \)

Non-rejection region: \(\mu_0 \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \)

Since the intervals are the same width they either both contain the other’s center or neither one does.
Polling: a binomial proportion confidence interval

Data \(x_1, \ldots, x_n \) from a Bernoulli(\(\theta \)) distribution with \(\theta \) unknown. A conservative normal\(^\dagger\) \((1 - \alpha)\) confidence interval for \(\theta \) is given by

\[
\left[\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}}, \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}} \right].
\]

Proof uses the CLT and the observation \(\sigma = \sqrt{\theta(1 - \theta)} \leq 1/2 \).

Political polls often give a margin-of-error of \(\pm 1/\sqrt{n} \). This rule-of-thumb corresponds to a 95% confidence interval:

\[
\left[\bar{x} - \frac{1}{\sqrt{n}}, \bar{x} + \frac{1}{\sqrt{n}} \right].
\]

(The proof is in the class 21 notes.)

Conversely, a margin of error of \(\pm 0.05 \) means 400 people were polled.

\(^\dagger\)There are many types of binomial proportion confidence intervals.

Board question

For a poll to find the proportion \(\theta \) of people supporting X we know that a \((1 - \alpha)\) confidence interval for \(\theta \) is given by

\[
\left[\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}}, \; \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}} \right].
\]

1. How many people would you have to poll to have a margin of error of .01 with 95% confidence? (You can do this in your head.)

2. How many people would you have to poll to have a margin of error of .01 with 80% confidence. (You’ll want R or other calculator here.)

3. If \(n = 900 \), compute the 95% and 80% confidence intervals for \(\theta \).