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Vacation!

Next pset is due one week after vacation!

No office hours March 23–April 1!
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Beta distribution

f (θ) =
(a+ b − 1)!

(a− 1)!(b − 1)!
θa−1(1− θ)b−1

We use a and b pos. integers but real a, b > 0 are allowed.

http://mathlets.org/mathlets/beta-distribution/

Observation:
Factorials are a normalizing factor, so if we have a pdf on [0, 1]

f (θ) = cθa−1(1− θ)b−1

then
θ ∼ beta(a, b)

and

c =
(a + b − 1)!

(a− 1)!(b − 1)!
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Board question preamble: beta priors
Suppose you are testing a new medical treatment with unknown
probability of success θ. You don’t know that θ, but your prior belief
is that it’s probably not too far from 0.5. You capture this intuition
with a beta(5,5) prior on θ.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Beta(5,5) for θ

To sharpen this distribution you take data and update the prior.

Question on next slide.
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Board question: beta priors

Beta(a, b): f (θ) =
(a + b − 1)!

(a − 1)!(b − 1)!
θa−1(1− θ)b−1

Treatment has prior f (θ) ∼ beta(5, 5)

1. Suppose you test it on 10 patients and have 6 successes. Find the
posterior distribution on θ. Identify the type of the posterior
distribution.

2. Suppose you recorded the order of the results and got
S S S F F S S S F F. Find the posterior based on this data.

3. Using your answer to (2) give an integral for the posterior
predictive probability of success with the next patient.

4. Use what you know about pdf’s to evaluate the integral without
computing it directly
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Solution

1. Prior pdf is f (θ) = 9!
4! 4!θ

4(1− θ)4 = c1θ
4(1− θ)4.

hypoth. prior likelihood Bayes numer. posterior

θ c1θ
4(1− θ)4 dθ

(10
6

)
θ6(1− θ)4 c3θ

10(1− θ)8 dθ beta(11, 9)

We know the normalized posterior is a beta distribution because it has the
form of a beta distribution (cθa−(1− θ)b−1 on [0,1]) so by our earlier
observation it must be a beta distribution.

2. The answer is the same. The only change is that the likelihood has a
coefficient of 1 instead of a binomial coefficent.

3. The posterior on θ is beta(11, 9) which has density

f (θ |, data) =
19!

10! 8!
θ10(1− θ)8.

Solution to (3) continued on next slide
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Solution continued
The law of total probability says that the posterior predictive probability of
success is

P(success | data) =

∫ 1

0
f (success | θ) · f (θ | data) dθ

=

∫ 1

0
θ · 19!

10! 8!
θ10(1− θ)8 dθ =

∫ 1

0

19!

10! 8!
θ11(1− θ)8 dθ

4. We compute the integral in (3) by relating it to the pdf of beta(12, 9):
20!

11! 8!θ
11(1− θ)7. Since the pdf of beta(12, 9) integrates to 1 we have

∫ 1

0

20!

11! 8!
θ11(1− θ)7 = 1 ⇒

∫ 1

0
θ11(1− θ)7 =

11! 8!

20!
.

Thus ∫ 1

0

19!

10! 8!
θ11(1− θ)8 dθ =

19!

10! 8!
· 11! 8!

20!
. =

11

20
.
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Conjugate priors

We had

Prior f (θ) dθ: beta distribution

Likelihood p(x |θ): binomial distribution

Posterior f (θ|x) dθ: beta distribution

The beta distribution is called a conjugate prior for the binomial
likelihood.

That is, the beta prior becomes a beta posterior and updating is easy!
Only the parameters have been changed to reflect the data.
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Concept Question

Suppose your prior f (θ) in the bent coin example is Beta(6, 8). You
flip the coin 7 times, getting 2 heads and 5 tails. What is the
posterior pdf f (θ|x)?

1. Beta(2,5)

2. Beta(11,10)

3. Beta(6,8)

4. Beta(8,13)

We saw in the previous board question that 2 heads and 5 tails will update
a beta(a, b) prior to a beta(a + 2, b + 5) posterior.

answer: (4) beta(8, 13).
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Reminder: predictive probabilities
Continuous hypotheses θ, discrete data x1, x2, . . .
(Assume trials are independent given the hypothesis θ.)

Prior predictive probability

p(x1) =

∫
p(x1 | θ)f (θ) dθ

Posterior predictive probability

p(x2 | x1) =

∫
p(x2 | θ)f (θ | x1) dθ

Analogous to discrete hypotheses: H1,H2, . . ..

p(x1) =
n∑

i=1

p(x1 |Hi)P(Hi) p(x2 | x1) =
n∑

i=1

p(x2 |Hi)p(Hi | x1).
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Continuous priors, continuous data

Bayesian update tables:

Bayes posterior
hypoth. prior likelihood numerator f (θ|x) dθ

θ f (θ) dθ φ(x | θ) φ(x | θ)f (θ) dθ
φ(x | θ)f (θ) dθ

φ(x)

total 1 φ(x) 1

φ(x) =

∫
φ(x | θ)f (θ) dθ

φ(x)dx is the prior predictive probability that the data belongs to a small
interval of size dx around x .
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Normal prior, normal data

N(µ, σ2) has density

f (y) =
1

σ
√

2π
e−(y−µ)2/2σ2

.

Observation:
The coefficient is a normalizing factor, so if we have a pdf

f (y) = ce−(y−µ)2/2σ2

then

y ∼ N(µ, σ2) and c =
1

σ
√

2π

Better: All we need is f (y) = ce−ay2+by
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Board question: normal prior, normal data

N(µ, σ2) has pdf: f (y) =
1

σ
√

2π
e−(y−µ)2/2σ2

.

Suppose our data follows a N(θ, 4) distribution with unknown
mean θ and variance 4. That is

φ(x | θ) = pdf of N(θ, 4)

Suppose our prior on θ is N(3, 1).

Suppose we obtain data x1 = 5.

1. Use the data to find the posterior pdf for θ.

Write out your tables clearly. Use (and understand) infinitesimals.

You will need to complete a square to do the updating!
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Solution
We have:

Prior: θ ∼ N(3, 1): f (θ) = c1e
−(θ−3)2/2

Likelihood x ∼ N(θ, 4): f (x | θ) = c2e
−(x−θ)2/8

For x = 5 the likelihood is c2e
−(5−θ)2/8

hypoth. prior likelihood Bayes numer.

θ c1e
−(θ−3)2/2 dθ c2e

−(5−θ)2/8 dx c3e
−(θ−3)2/2e−(5−θ)2/8 dθ dx

A bit of algebraic manipulation of the Bayes numerator gives

c3e
−(θ−3)2/2e−(5−θ)2/8 dθ dx = c3e

− 5
8
[θ2− 34

5
θ+61] = c3e

− 5
8
[(θ−17/5)2+61−(17/5)2]

= c3e
− 5

8
(61−(17/5)2)e−

5
8
(θ−17/5)2

= c4e
− 5

8
(θ−17/5)2 = c4e

− (θ−17/5)2

2· 45

The last expression shows the posterior is N
(
17
5 ,

4
5

)
.
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Solution graphs

prior = blue; posterior = purple; data = red

Data: x1 = 5
Prior is normal: µprior = 3; σprior = 1
Likelihood is normal: µ = θ; σ = 2
Posterior is normal µposterior = 3.4; σposterior = 0.894

• Will see simple formulas for doing this update next time.
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Board question: Romeo and Juliet

Romeo is always late. How late follows a uniform distribution
uniform(0, θ) with unknown parameter θ in hours.

Juliet knows that θ ≤ 1 hour and she assumes a flat prior for θ on
[0, 1].

On their first date Romeo is 15 minutes late. Use this data to update
the prior distribution for θ.

(a) Find and graph the prior and posterior pdfs for θ.

(b) Find the prior predictive pdf for how late Romeo will be on the
first date and the posterior predictive pdf of how late he’ll be on the
second date (if he gets one!). Graph these pdfs.

See next slides for solution
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Solution
Parameter of interest: θ = upper bound on R’s lateness.
Data: x1 = 0.25.
Goals: (a) Posterior pdf for θ
(b) Predictive pdf’s—requires pdf’s for θ
In the update table we split the hypotheses into the two different cases
θ < 0.25 and θ ≥ 0.25 :

prior likelihood Bayes posterior
hyp. f (θ) φ(x1|θ) numerator f (θ|x1)

θ < 0.25 dθ 0 0 0

θ ≥ 0.25 dθ 1
θ

dθ
θ

c
θ dθ

Tot. 1 T 1

The normalizing constant c must make the total posterior probability 1, so

c

∫ 1

0.25

dθ

θ
= 1 ⇒ c =

1

ln(4)
.

Continued on next slide.
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Solution graphs

Prior and posterior pdf’s for θ.
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Solution graphs continued

(b) Prior prediction: The likelihood function falls into cases:

f (x1|θ) =

{
1
θ if θ ≥ x1

0 if θ < x1

Therefore the prior predictive pdf of x1 is

φ(x1) =

∫
φ(x1|θ)f (θ) dθ =

∫ 1

x1

1

θ
dθ = − ln(x1).

continued on next slide
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Solution continued

Posterior prediction:
The likelihood function is the same as before:

φ(x2|θ) =

{
1
θ if θ ≥ x2

0 if θ < x2.

The posterior predictive pdf φ(x2|x1) =

∫
φ(x2|θ)f (θ|x1) dθ. The

integrand is 0 unless θ > x2 and θ > 0.25. There are two cases:

If x2 < 0.25 : φ(x2|x1) =

∫ 1

0.25

c

θ2
dθ = 3c = 3/ ln(4).

If x2 ≥ 0.25 : φ(x2|x1) =

∫ 1

x2

c

θ2
dθ = (

1

x2
− 1)/ ln(4)

Plots of the predictive pdf’s are on the next slide.
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Solution continued

Prior and posterior predictive pdf’s for x2
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From discrete to continuous Bayesian updating

Bent coin with unknown probability of heads θ.

Data x1: heads on one toss.

Start with a flat prior and update:

Bayes
hyp. prior likelihood numerator posterior
θ dθ θ θ dθ 2θ dθ

Total 1
∫ 1

0
θ dθ = 1/2 1

Posterior pdf: f (θ | x1) = 2θ.
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Approximate continuous by discrete

approximate the continuous range of hypotheses by a finite
number of hypotheses.

create the discrete updating table for the finite number of
hypotheses.

consider how the table changes as the number of hypotheses
goes to infinity.
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Chop [0, 1] into 4 intervals

hypothesis prior likelihood Bayes num. posterior

Total 1 –

n∑

i=1

θi ∆θ 1

1/4

θ = 1/8 1/8 (1/4) × (1/8) 1/16

1/4

θ = 3/8 3/8 (1/4) × (3/8) 3/161/4

θ = 5/8 5/8 (1/4) × (5/8) 5/16

1/4

θ = 7/8 7/8 (1/4) × (7/8) 7/16
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Chop [0, 1] into 12 intervals

hypothesis prior likelihood Bayes num. posterior

Total 1 –

n∑

i=1

θi ∆θ 1

1/12

θ = 1/24 1/24 (1/12)× (1/24) 1/144

1/12

θ = 3/24 3/24 (1/12)× (3/24) 3/144

1/12

θ = 5/24 5/24 (1/12)× (5/24) 5/144

1/12

θ = 7/24 7/24 (1/12)× (7/24) 7/144

1/12

θ = 9/24 9/24 (1/12)× (9/24) 9/144

1/12

θ = 11/24 11/24 (1/12)× (11/24) 11/1441/12

θ = 13/24 13/24 (1/12)× (13/24) 13/144

1/12

θ = 15/24 15/24 (1/12)× (15/24) 15/144

1/12

θ = 17/24 17/24 (1/12)× (17/24) 17/144

1/12

θ = 19/24 19/24 (1/12)× (19/24) 19/144

1/12

θ = 21/24 21/24 (1/12)× (21/24) 21/144

1/12

θ = 23/24 23/24 (1/12)× (23/24) 23/144
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Density histogram

Density histogram for posterior pmf with 4 and 20 slices.
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The original posterior pdf is shown in red.
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