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1 Learning Goals

1. Be familiar with the 2-parameter family of beta distributions and its normalization.

2. Be able to update a beta prior to a beta posterior in the case of a binomial likelihood.

2 Beta distribution

The beta distribution beta(a, b) is a two-parameter distribution with range [0, 1] and pdf

f(θ) =
(a+ b− 1)!

(a− 1)!(b− 1)!
θa−1(1− θ)b−1

We have made an applet so you can explore the shape of the Beta distribution as you vary
the parameters:

http://mathlets.org/mathlets/beta-distribution/.

As you can see in the applet, the beta distribution may be defined for any real numbers
a > 0 and b > 0. In 18.05 we will stick to integers a and b, but you can get the full story
here: http://en.wikipedia.org/wiki/Beta_distribution

In the context of Bayesian updating, a and b are often called hyperparameters to distinguish
them from the unknown parameter θ representing our hypotheses. In a sense, a and b are
‘one level up’ from θ since they parameterize its pdf.

2.1 A simple but important observation!

If a pdf f(θ) has the form cθa−1(1 − θ)b−1 then f(θ) is a beta(a, b) distribution and the
normalizing constant must be

c =
(a+ b− 1)!

(a− 1)! (b− 1)!
.

This follows because the constant c must normalize the pdf to have total probability 1.
There is only one such constant and it is given in the formula for the beta distribution.

A similar observation holds for normal distributions, exponential distributions, and so on.

2.2 Beta priors and posteriors for binomial random variables

Example 1. Suppose we have a bent coin with unknown probability θ of heads. We toss
it 12 times and get 8 heads and 4 tails. Starting with a flat prior, show that the posterior
pdf is a beta(9, 5) distribution.
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answer: This is nearly identical to examples from the previous class. We’ll call the data
from all 12 tosses x1. In the following table we call the leading constant factor in the
posterior column c2. Our simple observation will tell us that it has to be the constant
factor from the beta pdf.

The data is 8 heads and 4 tails. Since this comes from a binomial(12, θ) distribution, the

likelihood p(x1|θ) =

(
12

8

)
θ8(1− θ)4. Thus the Bayesian update table is

Bayes
hypothesis prior likelihood numerator posterior

θ 1 · dθ
(
12
8

)
θ8(1− θ)4

(
12
8

)
θ8(1− θ)4 dθ c2 θ

8(1− θ)4 dθ

total 1 T =

(
12

8

)∫ 1

0
θ8(1− θ)4 dθ 1

Our simple observation above holds with a = 9 and b = 5. Therefore the posterior pdf

f(θ|x1) = c2θ
8(1− θ)4

follows a beta(9, 5) distribution and the normalizing constant c2 must be

c2 =
13!

8! 4!
.

Note: We explicitly included the binomial coefficient
(
12
8

)
in the likelihood. We could just

as easily have given it a name, say c1 and not bothered making its value explicit.

Example 2. Now suppose we toss the same coin again, getting n heads and m tails. Using
the posterior pdf of the previous example as our new prior pdf, show that the new posterior
pdf is that of a beta(9 + n, 5 +m) distribution.

answer: It’s all in the table. We’ll call the data of these n+m additional tosses x2. This
time we won’t make the binomial coefficient explicit. Instead we’ll just call it c3. Whenever
we need a new label we will simply use c with a new subscript.

Bayes
hyp. prior likelihood posterior numerator

θ c2θ
8(1− θ)4 dθ c3 θ

n(1− θ)m c2c3 θ
n+8(1− θ)m+4 dθ c4 θ

n+8(1− θ)m+4 dθ

total 1 T =

∫ 1

0
c2c3 θ

n+8(1− θ)m+4 dθ 1

Again our simple observation holds and therefore the posterior pdf

f(θ|x1, x2) = c4θ
n+8(1− θ)m+4

follows a beta(n+ 9,m+ 5) distribution.

Note: Flat beta. The beta(1, 1) distribution is the same as the uniform distribution on
[0, 1], which we have also called the flat prior on θ. This follows by plugging a = 1 and
b = 1 into the definition of the beta distribution, giving f(θ) = 1.
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Summary: If the probability of heads is θ, the number of heads in n+m tosses follows a
binomial(n + m, θ) distribution. We have seen that if the prior on θ is a beta distribution
then so is the posterior; only the parameters a, b of the beta distribution change! We
summarize precisely how they change in a table. We assume the data is n heads in n+m
tosses.

hypothesis data prior likelihood posterior

θ x = n beta(a, b) binomial(n+m, θ) beta(a+ n, b+m)

θ x = n c1θ
a−1(1− θ)b−1 dθ c2θ

n(1− θ)m c3θ
a+n−1(1− θ)b+m−1 dθ

2.3 Conjugate priors

In the literature you’ll see that the beta distribution is called a conjugate prior for the
binomial distribution. This means that if the likelihood function is binomial, then a beta
prior gives a beta posterior. In fact, the beta distribution is a conjugate prior for the
Bernoulli and geometric distributions as well.

We will soon see another important example: the normal distribution is its own conjugate
prior. In particular, if the likelihood function is normal with known variance, then a normal
prior gives a normal posterior.

Conjugate priors are useful because they reduce Bayesian updating to modifying the param-
eters of the prior distribution (so-called hyperparameters) rather than computing integrals.
We saw this for the beta distribution in the last table. For many more examples see:
http://en.wikipedia.org/wiki/Conjugate_prior_distribution

http://en.wikipedia.org/wiki/Conjugate_prior_distribution
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