18.02A PROBLEM SET 9

Due in recitation Tuesday, February 10

- 1. (10 points) The Lasker Rink in the northeast corner of Central Park is a perfect circle having a radius of 50 meters. A skater moves counterclockwise around the edge of the rink at a speed of 5 meters per second. We'll put a coordinate system on the rink with origin at the center of the rink, the x-axis running east (toward Fifth Avenue) and the y-axis running north (toward Central Park North).
- a) Suppose (x, y) is a point at the edge of the rink. Write down a non-zero tangent vector

$$\mathbf{T}(x,y) = A(x,y)\mathbf{i} + B(x,y)\mathbf{j}$$

to the rink at the point (x, y). (That is, write formulas for A(x, y) and B(x, y).)

- b) Calculate the length of your tangent vector $\mathbf{T}(x, y)$.
- c) The skater's velocity vector at $\mathbf{v}(x, y)$ must be some multiple of your tangent vector:

$$\mathbf{v}(x,y) = c(x,y)\mathbf{T}(x,y).$$

Calculate c(x, y).

d) Find a vector field **F** with the property that the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{R}$$

along the skater's path measures the distance that the skater has travelled to the west. (For example, over a path beginning at the northern extremity of the rink and continuing to the western extremity, the line integral ought to be 50 meters.)

e) Suppose the skater's path C begins at the point $(50\sqrt{3}/2, 25)$, and continues exactly halfway around the rink to the point $(-50\sqrt{3}/2, -25)$. Evaluate the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{R}$$

using your formulas for \mathbf{F} and $\mathbf{v} = d\mathbf{R}/dt$. (It's possible to get an answer without writing down any integrals precisely, but part of the problem is to write them down.)

2. (8 points) This problem is about whirlpools. A vector field **F** in the plane (possibly not defined at the origin) is called a *whirlpool* if its direction at every point is perpendicular to the radius. The most general whirlpool vector field looks like

$$\mathbf{F}(x,y) = -f(r)y\mathbf{i} + f(r)x\mathbf{j}$$

with f a function of the radius $r = \sqrt{x^2 + y^2}$.

- a) How much work is done by the whirlpool force field in moving counterclockwise around the circle of radius r centered at the origin? (The answer depends on f(r).)
- b) The coordinates of **F** are

$$M(x,y) = -f(r)y, \qquad N(x,y) = f(r)x$$

Suppose $f(r) = 1/r^2$, so that the whirlpool field has magnitude 1/r. Calculate $\partial M/\partial y$ and $\partial N/\partial x$.

- c) Explain why part (a) shows that the only conservative whirlpool field is the zero field. Explain why part (c) shows that the whirlpool field with f(r) = 1/r is conservative. Explain this apparent contradiction.
- 3. (7 points) Problem 21.1(12) on page 757.