Chromatic polynomial

Péter Csikvári

Definition 1.1. Let G be a graph. A map $\varphi : V(G) \rightarrow \{1, 2, \ldots, q\}$ is a proper coloring with q colors if $\varphi(u) \neq \varphi(v)$ whenever $(u, v) \in E(G)$.

The number of proper colorings of G with q colors is denoted by $ch(G, q)$.

Proposition 1.2. The function $ch(G, q)$ is polynomial in q.

Proof. If we use exactly k colors then it corresponds to a decomposition of the vertex set into k independent sets. So if $a_k(G)$ denotes the number of decompositions of the vertex set into k independent sets then there are $a_k(G)q(q-1)\ldots(q-k+1)$ such proper colorings. Hence

$$ch(G, q) = \sum_{k=1}^{n} a_k(G)q(q-1)\ldots(q-k+1).$$

This is clearly a polynomial in q. \hfill \Box

Proposition 1.3. We have

$$ch(G, q) = ch(G - e, q) - ch(G/e, q),$$

where G/e denotes the graph obtained from G by contracting the edge e.

Proof. Let us consider the proper colorings of $G - e$. If $e = (u, v)$ then we can distinguish two cases: u and v get different colors then it is even a proper coloring of G. If u and v get the same color then it corresponds to a proper coloring of G/e. Hence

$$ch(G - e, q) = ch(G, q) + ch(G/e, q).$$

\hfill \Box

Proposition 1.4. For an $A \subseteq E(G)$ let $k(A)$ denote the number of components of the graph $(V(G), A)$. Then

$$ch(G, q) = \sum_{A \subseteq E(G)} (-1)^{|A|}q^{k(A)}.$$

Proof. Let B the set of all colorings (not just the proper ones) of $V(G)$. Let B_e the set of all colorings of $V(G)$, where the end vertices of e get the same color. Then the number of proper colorings of G is

$$ch(G, q) = |B \setminus \bigcup_{e \in E(G)} B_e|.$$
By inclusion-exclusion principle we have
\[|B \setminus \bigcup_{e \in E(G)} B_e| = |B| - \sum_{e \in E(G)} |B_e| + \sum_{e_1, e_2 \in E(G)} |B_{e_1} \cap B_{e_2}| - \ldots. \]

Note that for some \(A \subseteq E(G) \) we have
\[|\bigcap_{e \in A} B_e| = q^{k(A)}. \]

Hence
\[ch(G, q) = \sum_{A \subseteq E(G)} (-1)^{|A|} q^{k(A)}. \]

Proposition 1.5. Let
\[ch(G, q) = \sum_{k=0}^{n-1} (-1)^k c_{n-k} q^{n-k}. \]

Then \(c_i \geq 0. \)

Proof. We prove this claim by induction on the number of edges. For the empty graph \(O_n \) on \(n \) vertices we have \(ch(O_n, q) = q^n \), so the claim is true. Then from
\[ch(G, q) = ch(G - e, q) - ch(G/e) \]
we have
\[c_{n-k}(G) = c_{n-k}(G - e) + c_{n-k}(G/e). \]
(Note that \(G/e \) has \(n - 1 \) vertices!) Hence by induction
\[c_{n-k}(G) = c_{n-k}(G - e) + c_{n-k}(G/e) \geq 0. \]

Remark 1.6. June Huh proved that the sequence \((c_k(G))_{k=1}^n \) is log-concave, consequently unimodal. The coefficient \(c_{n-k}(G) \) has also a combinatorial meaning: it is the number of edge sets of size \(k \) not containing any broken cycle. A broken cycle is defined as follows: take any ordering of the edges, and a broken cycle is a cycle minus the highest index edge.

Theorem 1.7 (A. Sokal). Let \(z \) be a zero of the chromatic polynomial \(ch(G, x) \). Then \(|z| \leq 8\Delta \), where \(\Delta \) is the maximum degree of \(G \).

Remark 1.8. Similar statements are true for the matching polynomial, characteristic polynomial, and the Laplacian polynomial, but those are much much simpler than Sokal’s theorem.
There are easier theorems for zero-free regions of the chromatic polynomial. For instance, from the identity
\[ch(G, q) = \sum_{k=1}^{n} a_k(G)q(q-1)\ldots(q-k+1) \]
it is easy to prove that a real number \(z \) with \(z > n - 1 \) cannot be a zero of the chromatic polynomial. It is also easy to see from the recursion there is no zero between \((0, 1)\).

Theorem 1.9 (R. Stanley). Let \(a(G) \) be the number of acyclic orientations. Then \(|ch(G, -1)| = a(G) \).

Proof. (Sketch) Note that \(|ch(G, -1)| = (-1)^n ch(G, -1) \) by the alternating sign property of the coefficients of the chromatic polynomial. By the recursion formula of the chromatic polynomial all we need to prove that \(a(G) = a(G - e) + a(G/e) \), then we can finish the proof by induction on the number of edges.

The equality \(a(G) = a(G - e) + a(G/e) \) holds true, because every acyclic orientation of \(G - e \) can be extended to an acyclic orientation of \(G \), and we can extended it in two different ways when contracting the end vertices of the edge \(e \), the resulting orientation is an acyclic orientation of \(G/e \). \(\square\)

Proposition 1.10. We have
\[\sum_{S \subseteq V(G)} ch(G[S], x)ch(G[V \setminus S], y) = ch(G, x + y), \]
where \(G[S] \) is the induced subgraph of \(G \) on the set \(S \).

Remark 1.11. Similar identity holds true for the Laplacian-polynomial and the modified matching polynomial, \(M(G, x) = \sum_{k=0}^{\infty} (-1)^k m_k(G)x^{n-k} \).

Proof. It is enough to prove the identity for positive integer \(x \) and \(y \), then it is true for every \(x \) and \(y \). For positive integers \(x \) and \(y \), let us decompose the proper colorings of \(G \) with \(x + y \) colors according to the set \(S \) where we use the first \(x \) colors. Then we can color it in \(ch(G[S], x) \) ways, and we can color the remaining set \(V \setminus S \) in \(ch(G[V \setminus S], y) \) ways. From this the identity follows. \(\square\)