
Lecture 10

Instructor: Carlos Pérez Arancibia

MIT
Mathematics Department
Cambridge, October 12, 2017
FMM: Algorithm

• Let N be the maximum of the number of charges and number of evaluation points. We build the quad tree adaptively so that the leaf boxes contain no more than s charges and evaluation points, with s to be determined later.

• Assume that the projection and interpolation rule both involve (no more than) p canonical charges and canonical potentials per box, i.e., both m and n run from 1 to p.

• Assume that the projection/interpolation rules, and the interaction lists, are precomputed (they do not depend on the particular charge distribution.)
FMM: Algorithm

Initialization

Collect the points source locations y_j in boxes B at all scales, and the observation locations x_i in boxes A at all scales.

Let L be the level of the finest leaf box.

for all leaf boxes B:

Source-to-multipole: $q_m^B = \int_{B \cap \Gamma} P_m^B(y)q(y) \, ds_y.$

end

$w_n^A = 0$ for A the root box
FMM: Algorithm

Upward pass

for \(\ell = L - 1, \ldots, 1 \)

for \(B \) in tree at level \(\ell \)

M2M operation from \(B_c \) to \(B \):

\[
q_m^B = \sum_{c} \sum_{m'} P_m^B(y_{m'}^{B_c}) q_{m'}^{B_c}.
\]

end

end

Downward pass

for \(\ell = 2, \ldots, L \)

for \(A \) in tree at level \(\ell \)

L2L operation from \(A_p \) to \(A \), and M2L conversion:

\[
u_n^A = \sum_{n'} P_{n'}^A(x_n^A) u_{n'}^A + \sum_{B \in IL(A)} \sum_{m} G(x_n^A, y_m^B) q_m^B.
\]

end

end
FMM: Algorithm

Termination

for all leaf boxes A

Local-to-evaluation and diagonal interactions:

$$u_i = \sum_n P_n^A(x_i)u_n^A + \sum_{B \in \text{NL}(A)} \int_{B \cap \Gamma} G(x_i, y)q(y) \, ds_y.$$
Claim. If we take $s = p$, the complexity of the 2D FFM is $O(pN)$.

- s: maximum number of charges and evaluation points per leaf box.
- p: number of canonical charges and canonical potentials per box.

Proof.

- The number of leaf boxes is $O(N/s)$. \textbf{Important assumption!}
- The number of boxes is at most twice the number of leaf boxes, regardless of the tree, so it is also $O(N/s)$.
- The complexity of one M2M, or one M2L or one L2L operations is a small p-by-p matrix vector multiplication, hence $O(p^2)$ operations.
- The construction of the quadtree structure requires $O(N)$ operations.
FMM: Complexity

Proof (cont.).

- The source-to-multipole step involves mapping every one of the N charges to p canonical charges, hence has complexity $O(pN)$.

- In the upward pass, every one of the $O(N/s)$ source boxes is visited once, with an M2M that costs $O(p^2)$ operations, for a total of $O(p^2N/s)$.

- In the downward pass, every one of the $O(N/s)$ evaluation boxes is visited once, with an M2L and an L2L that both cost $O(p^2)$ operations, for a total of $O(p^2N/s)$ as well.

- For the termination, the local-to-evaluation step involves mapping p canonical potentials to every one of the N evaluation points, hence has complexity $O(pN)$.

- The diagonal term is a sum over $O(s)$ sources for each of the N evaluation points, hence has complexity $O(sN)$.

The overall operation count is $O(pN + p^2N/s + sN)$, and is minimized provided we take s of order p. This shows that the complexity is $O(pN)$ in 2D.
Multipole expansions: Laplace equation in 2D

We proved that

\[G(x, y) = -\frac{1}{2\pi} \log |x - y| = \frac{1}{2\pi} \text{Re} \left\{ \sum_{k=0}^{\infty} O_k(z_0 - z_c)I_k(z - z_c) \right\} \]

where \(z_0 = x_1 + ix_2, \ z = y_1 + iy_2 \) and \(|z - z_c| < |z_0 - z_c| \) and

\[I_k(z) = \frac{z^k}{k!} \quad \text{for} \quad k \geq 0 \]

\[O_k(z) = \frac{(k - 1)!}{z^k} \quad \text{for} \quad k \geq 1, \quad O_0(z) = -\log z. \]

Additionally we have the following identities:

\[I_k(z_1 + z_2) = \sum_{l=0}^{k} I_{k-l}(z_1)I_l(z_2) = \sum_{l=0}^{k} I_l(z_1)I_{k-l}(z_2) \]

and

\[O_k(z_1 + z_2) = \sum_{l=0}^{\infty} (-1)^l O_{k+l}(z_1)I_l(z_2), \quad |z_2| < |z_1|. \]
Multipole expansions: Laplace equation in 2D

We consider the problem of efficiently approximate the integral

\[
\int_{B \cap \Gamma} G(x, y)q(y) \, ds_y = \frac{1}{2\pi} \Re \left\{ \sum_{k=0}^{\infty} O_k(z_0 - z_c) \int_{\Gamma \cap B} I_k(z - z_c)q(z) \, ds_z \right\}
\]

for \(x = (\text{Re} \, z_0, \text{Im} \, z_0) \in A \) and \(y = (\text{Re} \, z, \text{Im} \, z) \in B \), where \(A \) and \(B \) are well-separated boxes, with \(y_c = (\text{Re} \, z_c, \text{Im} \, z_c) \) denoting the center of the source box \(B \).

We then define the moments associated with the source box \(B \) as

\[
\mu_k(z_c) = \int_{\Gamma \cap B} I_k(z - z_c)q(z) \, ds_z, \quad k \geq 0.
\]

M2M translation. If the expansion point \(z_c \) is moved to a new location \(z_c' \) the moments can be “translated” by using the following intensity:

\[
\mu_k(z_c') = \int_{\Gamma \cap B} I_k(z - z_c')q(z) \, ds_z
\]

\[
= \int_{\Gamma \cap B} I_k(z - z_c + z_c - z_c')q(z) \, ds_z
\]

\[
= \sum_{l=0}^{k} I_{k-l}(z_c - z_c') \mu_l(z_c) \quad \text{exact!}
\]
Multipole expansions: Laplace equation in 2D

M2L conversion. We introduce the so-called local expansion about the source point \(z_0 \) (\(x \)). Suppose \(z_L \) is a point close to the source point \(z_0 \), \(|z_0 - z_L| \ll |z_L - z_c| \), then:

\[
\int_{\Gamma \cap B} G(z_0, z) q(z) \, ds_z = \frac{1}{2\pi} \sum_{k=0}^{\infty} O_k(z_0 - z_c) \mu_k(z_c) \quad \text{Multipole expansion}
\]

\[
= \frac{1}{2\pi} \sum_{k=0}^{\infty} O_k(z_L - z_c) + O_k(z_0 - z_L) \mu_k(z_c)
\]

\[
= \frac{1}{2\pi} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (-1)^l O_{k+l}(z_L - z_c) I_l(z_0 - z_L) \mu_k(z_c)
\]

\[
= \frac{1}{2\pi} \sum_{l=0}^{\infty} I_l(z_0 - z_L) (-1)^l \sum_{k=0}^{\infty} O_{k+l}(z_L - z_c) \mu_k(z_c)
\]

Local expansion

\[
= \frac{1}{2\pi} \sum_{l=0}^{\infty} I_l(z_0 - z_L) L_l(z_L)
\]

where the expansion coefficients \(L_l(z_L) \) are given by the M2L conversion formula:

\[
L_l(z_L) = (-1)^l \sum_{k=0}^{\infty} O_{k+l}(z_L - z_c) \mu_k(z_c).
\]
L2L translation. If the point of the local expansion is moved from z_L to $z_{L'}$, we then have the following expression for the new local expansion coefficients:

$$
\int_{\Gamma \cap B} G(z_0, z)q(z) \, ds_z \approx \frac{1}{2\pi} \sum_{l=0}^{p} L_l(z_L)I_l(z_0 - z_L)
= \frac{1}{2\pi} \sum_{l=0}^{p} L_l(z_L)I_l(z_0 - z_{L'} + z_{L'} - z_L)
= \frac{1}{2\pi} \sum_{l=0}^{p} \sum_{m=0}^{l} L_l(z_L)I_m(z_0 - z_{L'})I_{l-m}(z_{L'} - z_L)
= \frac{1}{2\pi} \sum_{m=0}^{p} I_m(z_0 - z_{L'}) \sum_{l=m}^{p} L_l(z_L)I_{l-m}(z_{L'} - z_L).
$$

On the other hand, since

$$
\int_{\Gamma \cap B} G(z_0, z)q(z) \, ds_z \approx \frac{1}{2\pi} \sum_{m=0}^{p} L_m(z_{L'})I_m(z_0 - z_{L'}),
$$

we obtain

$$
L_m(z_{L'}) = \sum_{l=m}^{p} L_l(z_L)I_{l-m}(z_{L'} - z_L)
$$

which we refer to as the L2L translation formula.
Multipole expansions: Helmholtz equation in 2D

Graf’s addition theorem:

\[C_n(w) e^{in\theta} = \sum_{m=-\infty}^{\infty} C_{n+m}(u) J_m(v) e^{im\alpha} \quad (|v e^{\pm i\alpha}| < |u|) \]

where \(C_n \) is \(J_n, Y_n \) or \(H_n^{(1)} \),

\[w = \sqrt{u^2 + v^2 - 2uv \cos \alpha} \]

and

\[u - v \cos \alpha = w \cos \theta, \quad v \sin \alpha = w \sin \theta. \]

The fundamental solution of the 2D Helmholtz equation can be expanded as:

\[G_k(x, y) = \frac{i}{4} H_0^{(1)}(k|x-y|) = \frac{i}{4} \sum_{n=-\infty}^{\infty} O_n(x-y_c) I_{-n}(y-y_c), \quad |y-y_c| < |x-y_c| \]

where \(k \) is the wavenumber, \(y_c \) is an expansion point close to \(y \), and the two auxiliary function \(I_n \) and \(O_n \) are given by:

\[I_n(x) = (-i)^n J_n(kr) e^{in\alpha}, \]

\[O_n(x) = i^n H_n^{(1)}(kr) e^{in\alpha} \quad \text{with} \quad x = r(\cos \alpha, \sin \alpha). \]
Separability of the Helmholtz Green function

We consider \(x, y \in \mathbb{R}^2 \), and

\[
G(x, y) = \frac{i}{4} H_0^{(1)}(k|x - y|).
\]

Assume that \(x \in A \) and \(y \in B \), where \(A \) and \(B \) are two well-separated boxes. Let \(r > 0 \) be the radius of (the circumscribed circle of) \(B \), and \(d > 2r \) be the distance from the center of \(B \) to the box \(A \). For convenience, the box \(B \) is centered at the origin.

Theorem. Consider \(A \) and \(B \) as described above. For all \(p > 0 \), there exists a constant \(C_p(k) > 0 \) such that

\[
\left| G(x, y) - \frac{i}{4} \sum_{n=-p}^{p} O_n(x) I_{-n}(y) \right| \leq C_p(k) \left(\frac{r}{d} \right)^p.
\]
Separability of the Helmholtz Green function

We consider \(x, y \in \mathbb{R}^2 \), and

\[G(x, y) = \frac{i}{4} H_0^{(1)}(k|x - y|). \]

Assume that \(x \in A \) and \(y \in B \), where \(A \) and \(B \) are two well-separated boxes. Let \(r > 0 \) be the radius of (the circumscribed circle of) \(B \), and \(d > 2r \) be the distance from the center of \(B \) to the box \(A \). For convenience, the box \(B \) is centered at the origin.

Theorem. Consider \(A \) and \(B \) as described above. For all \(p > 0 \), there exists a constant \(C_p(k) > 0 \) such that

\[
\left| G(x, y) - \frac{i}{4} \sum_{n=-p}^{p} O_n(x) I_{-n}(y) \right| \leq C_p(k) \left(\frac{r}{d} \right)^p.
\]

In practice one needs to select \(p \) such that \(p > kr \).
We consider the approximation of the integral:

$$\int_{\Gamma \cap B} G(x, y)q(y) \, ds_y = \frac{i}{4} \sum_{n=-\infty}^{\infty} O_n(x - y_c) \int_{\Gamma \cap B} I_{-n}(y - y_c)q(y) \, ds_y,$$

where $y \in B$ and $x \in A$, A and B being well-separated boxes. We thus define the moments as:

$$\mu_n(y_c) = \frac{i}{4} \int_{\Gamma \cap B} I_{-n}(y - y_c)q(y) \, ds_y, \quad n \in \mathbb{Z}.$$

M2M translation. If the expansion point y_c is moved to a new location y_c' the moments can be “translated” by using the following intensity:

$$\mu_n(y_{c'}) = \int_{\Gamma \cap B} I_n(y - y_{c'})q(y) \, ds_y = \int_{\Gamma \cap B} I_n(y_2 + y_{c'} - y_{c'})q(y) \, ds_y$$

$$= \sum_{m=-\infty}^{\infty} I_{n-m}(y_c - y_{c'})\mu_m(y_c)$$
Multipole expansions: Helmholtz equation in 2D

Local expansion and M2L conversion. By the symmetry of the Green function we obtain the following local expansion:

\[
\int_{\Gamma \cap B} G(x, y)q(y) \, ds_y = \sum_{n=-\infty}^{\infty} I_{-n}(x - x_L) \frac{i}{4} \int_{\Gamma \cap B} O_n(y - x_L)q(y) \, ds_y
\]

where \(|x - x_L| < |y_c - x_L| \) (\(y_c \) denotes the center of the box \(B \)). Therefore, using the addition theorem we obtain the following M2L conversion formula:

\[
L_n(x_L) = \sum_{m=-\infty}^{\infty} (-1)^m O_{n-m}(x_L - y_c) \mu_m(y_c).
\]

L2L translation. If the point of the local expansion is moved from \(x_L \) to \(x_L' \), we then have the following expression for the new local expansion coefficients:

\[
L_n(x_{L'}) = \sum_{m=-\infty}^{\infty} I_m(x_{L'} - x_L)L_{n-m}(x_L).
\]

which we refer to as the L2L translation formula.
FMM algorithm

Initialization

Collect the points source locations \mathbf{y}_j in boxes B at all scales, and the observation locations \mathbf{x}_i in boxes A at all scales.

Let L be the level of the finest leaf box.

for all leaf boxes B:

Source-to-multipole (source-to-moment):

Compute $\mu^B_m = \mu_m(\mathbf{y}_c^B)$ where \mathbf{y}_c^B is the center of the leaf box B.

end

Note that:

Laplace: $\mu_k(z_c) = \int_{\Gamma \cap B} I_k(z - z_c)q(z) \, ds_z, \quad k \geq 0.$

Helmholtz: $\mu_n(\mathbf{y}_c) = \frac{i}{4} \int_{\Gamma \cap B} I_{-n}(\mathbf{y} - \mathbf{y}_c)q(\mathbf{y}) \, ds_{\mathbf{y}}, \quad n \in \mathbb{Z}.$
FMM algorithm: leaf boxes

leaf boxes
FMM algorithm: interaction list IL(A)
FMM algorithm: $\text{far}(A)$
FMM algorithm: neighbor list NL(A)
FMM algorithm

Upward pass

for \(\ell = L - 1, \ldots, 1 \)
for \(B \) in tree at at level \(\ell \)
 M2M translation from \(B_c \) to \(B \):

\[
\mu^n_B = \mu_m(y^n_B) = \sum_{c} \sum_{m=-\infty}^{\infty} I_{n-m}(y^B_c - y^n_B) \mu^B_m.
\]

\(y^B_c \) is the center of the box \(B \)
\(y^B_c \) is the center of the child box \(B_c \)

end

end

... in the case of the Laplace equation: (M2M translation)

\[
\mu^n_B = \mu_n(z^n_B) = \sum_{c} \sum_{l=0}^{n} I_{n-l}(z^B_c - z^n_B) \mu^B_l.
\]

moment associated to parent box

moments associated to child boxes
FMM algorithm

Upward pass: M2M translation
FMM algorithm

Downward pass
for $\ell = 0, \ldots, L$
 for A in tree at level ℓ
 Compute the local expansion coefficients:

\[
L_n(x_A^L) = \sum_{m=-\infty}^{\infty} I_m(x_A^L - x_{Lp}^A) L_{n-m}(x_{Lp}^A) + \sum_{B \in \text{IL}(A)} \sum_{m=-\infty}^{\infty} (-1)^m O_{n-m}(x_A^L - y_c^B) \mu_m(y_c^B) \tag{L2L}
\]

\[
\sum_{B \in \text{IL}(A)} \sum_{m=-\infty}^{\infty} (-1)^m O_{n-m}(x_A^L - y_c^B) \mu_m(y_c^B) \tag{M2L}
\]

x_A^L: is the center of the box A

x_{Lp}^A is the center of the parent box A_p.

end

end

... in the case of the Laplace equation

\[
L_n(z_A^L) = \sum_{l=n}^p I_{l-n}(z_A^L - z_{Lp}^A) L_l(z_{Lp}^A) + \sum_{B \in \text{IL}(A)} \sum_{k=0}^{\infty} (-1)^n O_{k+n}(z_A^L - z_c^B) \mu_m(z_c^B). \]
FMM algorithm

Downward pass: L2L translation
FMM algorithm

Termination

for all leaf boxes A

Local-to-evaluation and diagonal interactions:

Helmholtz $\left\{ u(x_i) = u_i = \sum_{n=-\infty}^{\infty} I_n(x_i - x_L^A)L_n(x_L^A) + \sum_{B \in NL(A)} \int_{B \cap \Gamma} G(x_i, y) q(y) \, ds_y \right.$

x_L^A is the center of the box A.

end

... in the case of the Laplace equation:

$u(x_i) = \frac{1}{2\pi} \sum_{\ell=0}^{\infty} \text{Re} \left\{ L_\ell(z_L^A) I_\ell(z_i - z_L^A) \right\} + \sum_{B \in NL(A)} \int_{B \cap \Gamma} G(x_i, y) q(y) \, ds_y$
FMM in 3D: Octree

Example: Neighbor list NL(A)
FMM in 3D: Octree

Example: Interaction list IL(A)
FMM in 3D: Octree

Example: Interaction list far(A)
Multipole expansions: Laplace equation in 3D

We proved that
\[G(x, y) = \frac{1}{4\pi|x - y|} = \frac{1}{4\pi} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} S_{n,m}(x - y_c) R_{n,m}(y - y_c), \quad |y - y_c| < |x - y_c| \]

where

\[R_{n,m}(x) = \frac{1}{(n + m)!} P_n^m(\cos \theta) e^{im\phi} r^n \]
\[S_{n,m}(x) = (n - m)! P_n^m(\cos \theta) e^{im\phi} \frac{1}{r^{n+1}} \]

where \((\rho, \theta, \phi)\) are the coordinates of \(x\) in spherical coordinates.

Moments:
\[\mu_{n,m}(y_c) = \int_{\Gamma \cap B} R_{n,m}(y - y_c) q(y) \, ds_y, \quad n \geq 0, |m| \leq n \]

\(y_c\): center of the 3D box \(B\).
Multipole expansions: Laplace equation in 3D

M2M translation:

\[\mu_{n,m}(y_c') = \sum_{n'=0}^{n} \sum_{m'=-n'}^{n'} R_{n',m'}(y - y_c') \mu_{n-n',m-m'}(y_c). \]

M2L conversion:

\[L_{n,m}(x_L) = (-1)^n \sum_{n'=0}^{\infty} \sum_{m'=-n'}^{n'} \frac{S_{n+n',m+m'}(x_L - y_c) \mu_{n',m'}(y_c),}{|x-x_L| < |y_c-x_L|,} \]

\(x_L \) is the center of the 3D evaluation box \(A \). (\(A \) and \(B \) are well separated)

L2L translation:

\[L_{n,m}(x_{L'}) = \sum_{n'=n}^{\infty} \sum_{m'=-n'}^{n'} R_{n'-n,m'-m}(x_{L'}) L_{n',m'}(x_L). \]