


Higher dimensions:

how can we understand them, and why should we?

Today we’ll see how
big data

is described by
high-dimensional geometry.

What’s remarkable is that these don’t sound more than
superficially similar.

Let’s begin by thinking about an apparently unrelated problem.



The sphere packing problem

How densely can we pack identical spheres into space?

Not allowed to overlap (but can be tangent).

Density = fraction of space filled by the spheres.



Why should we care?

The densest packing is pretty obvious.
It’s not difficult to stack cannonballs or oranges.

It’s profoundly difficult to prove (Hales 2005, Hales et al. 2017).
But why should anyone but mathematicians care?

One answer is that it’s a toy model for:

Granular materials.

Packing more complicated shapes into containers.

Sphere packing is a first step towards these more complex
problems.

Today we’ll examine a deeper reason.



Varying the dimension

What if we didn’t work in three-dimensional space?

The two-dimensional analogue is packing circles in the plane.

Still tricky to prove, but not nearly as difficult (Thue 1892).

What about one dimension? What’s a one-dimensional sphere?



Spheres in different dimensions
Sphere centered at x with radius r means the points at distance r from x .

x

r

Ordinary sphere in three dimensions, circle in two dimensions.

Just two points in one dimension:

x

r

The inside of a one-dimensional sphere is an interval.
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One-dimensional sphere packing is boring:

(density = 1)

Two-dimensional sphere packing is prettier and more interesting:

(density ≈ 0.91)

Three dimensions strains human ability to prove:

(density ≈ 0.74)

What about four dimensions? Is that just crazy?



Some history

Thomas Harriot (1560–1621)

Mathematical assistant to Sir Walter Raleigh.

A Brief and True Report of the New Found Land of Virginia (1588)

First to study the sphere packing problem.



Claude Shannon (1916–2001)

Developed information theory.

A Mathematical Theory of Communication (1948)

Practical importance of sphere packing in higher dimensions!
We’ll return to this later.



What are higher dimensions?
Anything you can describe with multiple coordinates.

n coordinates = n dimensions

2 is a point on the number line:

20 1

(2, 3) is a point in the plane:

(2, 3)
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3



(2, 3) is a point in the plane:

(2, 3)

2

3

(2, 3, 5) is a point in three dimensions. Like (2, 3) but 5 units up
out of the plane.

(2, 3, 5, 7) is a point in four dimensions. Like (2, 3, 5) but 7 units in
some entirely new direction (!?).



Is the fourth dimension time?

This question makes no more sense than debating whether the
second dimension is width.

Dimensions are mathematical abstractions and don’t come with
built-in labels saying “this is time.”

The fourth dimension can represent time if we want it to, or
anything else we want it to represent.

Mathematics = freedom.

Four-dimensional space-time is an important concept in physics,
but it’s just one application of the fourth dimension.

(Similarly, don’t think about spatial shortcuts or parallel universes.)



Visualization

So how can we visualize higher dimensions?

I wish I could visualize a thousand dimensions,
but I don’t believe any human being can.

Instead, the easiest path to higher dimensions is via algebra:
higher dimensions just means mathematics with more variables.



Distances and volumes

The distance between (a, b, c , d) and (w , x , y , z) is√
(a− w)2 + (b − x)2 + (c − y)2 + (d − z)2.

Just like two or three dimensions, but with an extra coordinate.
(n-dimensional Pythagorean theorem)

4d volume of right-angled a× b × c × d box =

product abcd of lengths in each dimension.

Just like area of a rectangle or volume of a 3d box.

Higher dimensions work analogously. Just use all the coordinates.



Why should we measure things this way? We don’t have to!
Once again, mathematics = freedom.

We could measure distances and volumes however we like, to get
different geometries that are useful for different purposes.

We’re going to focus on Euclidean geometry, generalizing high
school geometry as directly as possible to higher dimensions.



Applications

Anything you can measure using n numbers is a point in n
dimensions. Rn = n-dimensional space (R = real numbers)

Your height, weight, and age form a point in R3.

Twenty measurements in an experiment yield a point in R20.

One pixel in an image is described by a point in R3 (red, green, and
blue components). A one-megapixel image is a point in R3000000.

Some climate models have ten billion variables, so their states are
points in R10000000000.

High dimensions are everywhere! Low dimensions are anomalous.
All data can be described by numbers, so any large collection of
data is high dimensional.



Descartes

Descartes developed analytic geometry. Any time you are using
two or three variables, you are secretly doing two- or
three-dimensional geometry.

Thinking geometrically may help, even when you don’t expect it.

More generally, any time you use n variables, you are secretly doing
n-dimensional geometry.

Large numbers of variables occur everywhere, and therefore so
does high-dimensional geometry.



How can we visualize four dimensions?
Perspective picture of a hypercube.



Shadow cast in a lower dimension (“projection”).

Fundamentally the same as a perspective picture.



Projections can get complicated.



Fun with Schlegel diagrams

Audience participation time!



Cross sections

Cubes have square cross sections.
Hypercubes have cubic cross sections.

Cubes have other cross sections too:

So do hypercubes:





Hinton cubes
Charles Howard Hinton (1853–1907)
A New Era of Thought, Swan Sonnenschein & Co., London, 1888

(Hinton introduced the term “tesseract” and invented the automatic pitching machine.)



Alicia Boole Stott (1860–1940)

On certain series of sections of the regular four-dimensional
hypersolids, Verhandelingen der Koninklijke Akademie van
Wetenschappen te Amsterdam 7 (1900), no. 3, 1–21.



Information theory

Shannon’s application of high-dimensional sphere packings.

Represent signals by n-dimensional vectors s.
Each coordinate specifies some measurement.

E.g., radio signals, with
coordinates = amplitudes at different frequencies.

In most applications, n will be large. Often hundreds or thousands.
(No reason to limit ourselves to making just a few measurements!)

Send stream of signals over this channel.



Noise in the communication channel

The key difficulty in communication is noise.

Send signal s in Rn; receive r on other end.
Noise means generally r 6= s.

The channel has some noise level ε, and r is almost always within
distance ε of s.

Imagine an error sphere of radius ε about each sent signal, showing
how it could be received.

s
r

ε



How can we communicate without error?

Agree ahead of time on a restricted vocabulary of signals.

If s1 and s2 get too close, received signals could get confused:

s1 s2
r

Did r come from s1 or s2? Therefore, keep all signals in S at least
2ε apart, so the error spheres don’t overlap:

s1 s2

2ε



This is sphere packing!

The error spheres should form a sphere packing. This is called an
error-correcting code.

For rapid communication, want as large a vocabulary as possible.
I.e., to use space efficiently, want to maximize the packing density.

Rapid, error-free communication requires a dense sphere packing.
Real-world channels correspond to high dimensions.

Of course some channels require more elaborate noise models, but
sphere packing is the most fundamental case.



What is known?

Each dimension seems to behave differently.

Good constructions are known for low dimensions.

No idea what the best high-dimensional packings look like,
or even whether they are crystalline or amorphous.

Upper/lower density bounds in general.

Bounds are very far apart:
For n = 36, differ by a multiplicative factor of 52.
This factor grows exponentially as n→∞.
Tremendous wasted space outside the spheres?



Packing in high dimensions

On a scale from one to infinity, a million is small, but we know
almost nothing about sphere packing in a million dimensions.

Simple lower bound: can achieve density at least 2−n in Rn.



How to get density at least 2−n

Consider any packing in Rn with spheres of radius r ,
such that no further spheres can be added without overlap.

No point in Rn can be 2r units away from all sphere centers.
I.e., radius 2r spheres cover space completely.

uncovered point could be center of new sphere

Doubling the radius multiplies the volume by 2n.

Thus, the radius r packing has density at least 2−n (since the
radius 2r packing covers all of space). Q.E.D.

This is very nearly all we know!



Nonconstructive proof

This proof shows that the best packing in Rn must have density
at least 2−n.

But it didn’t describe where to put the spheres in an actual
packing. It’s a nonconstructive proof.

In fact, nobody has any idea how to build such a good packing.
Our constructions are all much, much worse.

Philosophical conundrum:
Are high-dimensional sphere packings intrinsically undescribable?
Or do we just lack the tools to describe them?



Packing in high dimensions (large n)
We just showed:
density at least 2−n.

Hermann Minkowski (1905):
at least 2 · 2−n.

. . . [many further research papers]. . .

Keith Ball (1992):
at least 2n · 2−n.

Stephanie Vance (2011):
at least 6

e n · 2
−n when n is divisible by 4.

Akshay Venkatesh (2013):

at least e−γ

2 n log log n · 2−n for certain dimensions.

For comparison, the best upper bound known is 2−0.599n, due to Grigorii

Kabatiansky and Vladimir Levenshtein (1978).
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The most remarkable packings

Certain dimensions have amazing packings.

R8: E8 root lattice
R24: Leech lattice [named after John Leech (1926–1992)]

Extremely symmetrical and dense packings of spheres.

Connected with many areas in mathematics, physics
(such as string theory, modular forms, finite simple groups).

What makes these cases work out so well?



Sphere packing problem is solved for
only two cases with dimension greater
than 3. Breakthrough in March, 2016:

Theorem (Viazovska).
The E8 root lattice achieves the greatest
possible sphere packing density in R8,
namely π4/384 ≈ 25.36%.

Twenty-four dimensions builds on her techniques:

Theorem (Cohn, Kumar, Miller, Radchenko, and Viazovska).
The Leech lattice Λ24 achieves the greatest possible sphere
packing density in R24, namely π12/12! ≈ 0.1929%.



Why is the sphere packing problem difficult?

Many local maxima for density.

Lots of space.

Complicated geometrical configurations.

No good way to rule out implausible configurations rigorously.

High dimensions are weird.



Visualization, take two

There are many ways to try to visualize four dimensions.
But they become incomprehensible as the dimension increases.

Is there any way we can conceive of a million dimensions?
What could it look like?

Let’s start by thinking about cubes, because they are easy to pack.



Even the cubes go crazy
Imagine a unit cube in Rn. Each edge has length 1.

There are 2n vertices (corners).

Distance between opposite corners is
√

12 + · · ·+ 12 =
√
n.

Imagine n = 106. How can this be?
Let’s imagine connecting the center of a cube to all its vertices.
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Concentration of volume

Almost all volume in high-dimensional solids is concentrated near
the boundary.

Why? Imagine a sphere. Fraction of volume less than 90% of way
to boundary is 0.9n. This tends rapidly to zero as n→∞.
For example, 0.91000 ≈ 1.75 · 10−46.

r 0.9r

We can replace 0.9 with 0.99, 0.999, or whatever we want.



[Aside for those who know calculus:
As n→∞ with c fixed, fraction of volume less than 1− c/n of
the way to the boundary is (1− c/n)n → e−c .]

All low-dimensional intuition must be revised.

Boundaries, where all the interaction takes place, become
increasingly important in high dimensions.

Relevant for packing and for analysis of algorithms.

Also the second law of thermodynamics (increase of entropy)!



In summary

High dimensions are deeply weird. Even four dimensions can be
puzzling, and a million dimensions are outlandish.

We really don’t know what the best sphere packing in a million
dimensions looks like. Our estimate of its density might be off by
an exponential factor. We don’t even know whether it is ordered
(like a crystal) or disordered (like a lump of dirt).

But these problems really matter. Every time you use a cell phone,
you can thank Shannon and his relationship between information
theory and high-dimensional sphere packing.



For more information

For references, links, and an STL file for a 3-d printer, see:

http://3d.momath.org

Have fun exploring higher dimensions!

http://3d.momath.org

