Computability of Rational Points on Curves over Function Fields in Characteristic p

1 Introduction

Let k be a perfect field of characteristic p and K a function field over k. That is, $K = k(V)$ for some integral variety V over k. Let X be a geometrically integral, regular, projective curve over K with arithmetic genus $g := g(X) = \dim_K H^1(X, \mathcal{O}_X)$. There are two important cases when $X(K)$ is known to be finite, namely

(i) X is smooth, $g \geq 2$, and X is not isotrivial [8], and

(ii) X is not smooth.

Case (ii) occurs only in characteristic p and is equivalent to $g > g(\widetilde{X}_K)$, where \widetilde{X}_K is the normalization of X_K. The number $\widetilde{g} := g(\widetilde{X}_K)$ is known as the absolute genus of X. The fact that $X(K)$ is finite for such curves was proved by Samuel in the case where $\widetilde{g} \geq 2$ ([8], Théorème 6) and by Voloch and Jeong in the cases where $\widetilde{g} = 0$ or $\widetilde{g} = 1$ [15][4].

This paper is concerned with the question of computing the set $X(K)$. For case (i), this was solved by Szpiro [13] in the form of an explicit bound for the heights of rational points on X (see Theorems 6.6, 6.8, and 6.10 below). Here, we answer the question for case (ii).

Theorem 1.1. Let K be a field of characteristic p finitely generated over a perfect field k. Let X be a geometrically integral, regular, projective curve over K that is not smooth. Then, $X(K)$ is finite and computable.

This theorem, together with Theorem 6.10 below, gives the following interesting corollary, to be proved in Section 6.

Corollary 1.2. Let K be as in Theorem 1.1, and let X be a geometrically integral, regular, projective curve over K. If $X(L)$ is finite for every finite separable extension L of K, then $X(K)$ is computable.

The rest of this paper is devoted to the proof of Theorem 1.1. In Section 2, we elaborate on what it means for $X(K)$ to be computable. In Section 3, we give some background lemmas concerning curves X that are regular but not smooth and prove facts that hold in any absolute genus. In particular, in proving Theorem 1.1, we show that it suffices to assume K is a function field in one variable over k and that there exists an inseparable degree p morphism $\pi: X \to Y$, where Y is a smooth curve over K with $g(Y) = \widetilde{g}$. This latter assumption was a crucial step in [15] and is important for Proposition 3.8, which is used in every subsequent section. In Section 4, we handle the case where $\widetilde{g} = 0$. The approach here is an effective version of the proof of finiteness of $X(K)$ given in [4]. In Sections 5 and 6, we handle the cases where $\widetilde{g} = 1$ and $\widetilde{g} \geq 2$ respectively. In both sections, we give separate proofs in the cases where Y is isotrivial and Y is not isotrivial.
2 Computability

To make sense of the statement of Theorem 1.1, all elements of K need to be described with a finite amount of information. Therefore, we assume k has finite transcendence degree over \mathbb{F}_p. If k is not algebraically closed, then $X(K)$ can be computed by first computing $X(kK)$ and checking which points are K-points. For this reason, we assume k is algebraically closed. The curve X will be definable over some field K_0 whose field of constants k_0 is finitely generated over \mathbb{F}_p. There will then exist a finite field extension k_1 of k_0 such that $X(K) = X(k_1K_0)$.

To explicitly specify a field F, we give a finite set of generators for F over \mathbb{F}_p (or another field already specified) together with any algebraic relations the generators satisfy. To specify a projective variety V over a field F, we give generators of its homogeneous ideal for an embedding of V in some projective space over F.

Given all of the above, in proving Theorem 1.1, we show that there exists an algorithm that takes the following as input.

Input 2.1.

(i) a prime number p,

(ii) a field k_0 finitely generated over \mathbb{F}_p,

(iii) a nonnegative number $m \in \mathbb{Z}_{\geq 0}$,

(iv) a finite separable extension K_0 of $k_0(t_1, \ldots, t_m)$ such that the largest algebraic extension of k_0 in K_0 is k_0, with $K := k_0K_0$, and

(v) a geometrically integral, nonsmooth, projective curve X over K_0 such that X_K is regular.

The algorithm will then give as output a finite extension k_1/k_0 with $K_1 := k_1K_0$ such that $X(K) = X(K_1)$ as well as the set $X(K_1)$. In Section 3, we show that we can make simplifying assumptions on X and K. Therefore, to prove Theorem 1.1, Input 2.1 will be replaced by Input 3.14.

3 Regular nonsmooth curves

Lemma 3.1. Let k be a field of characteristic p, and let K be a field with separating transcendence basis $\{t_i\}_{i \in I} \subseteq K$ over k. Then K is a purely inseparable extension of kK^p generated by $\{t_i\}$. If I is a finite set of size n, then $[K : kK^p] = p^n$.

Proof. K is separable over $k(\{t_i\})$, and K is purely inseparable over kK^p. This means K is both separable and purely inseparable over $kK^p(\{t_i\})$, i.e., $K = kK^p(\{t_i\})$. If I is a finite set of size n, then by a similar argument, $k(\{t_i\}) \cap kK^p = k(\{t_i^p\})$. Thus,

$$[K : kK^p] = [k(t_1, \ldots, t_n) : k(t_1^p, \ldots, t_n^p)] = p^n.$$

Remark 3.2. We will use Lemma 3.1 frequently in the following two cases.
(i) Let K be a field of characteristic p that is finitely generated over a perfect field k. If t_1, \ldots, t_m is a transcendence basis of K over k, then K is a degree p^m purely inseparable extension of K^p generated by t_1, \ldots, t_m.

(ii) Let K be a field of characteristic p, and let X be an integral curve over K. Assume further that X is geometrically reduced over K so that there exists $z \in K(X)$ such that $K(X)$ is a finite separable extension of $K(z)$. Then, $K(X)$ is a degree p purely inseparable extension of $K \cdot K(X)^p$ generated by z.

Proposition 3.3. Let K be a field of characteristic p, and let X be a geometrically integral projective curve over K that is regular but not smooth. Let X_i be a regular projective curve over K with function field $K \cdot K(X)^p$. Let $g_i := g(X_i)$ and $\tilde{g} := g(\overline{X_{\overline{R}}})$, where $\overline{X_{\overline{R}}}$ is the normalization of $X_{\overline{R}}$. Then,

$$g_0 \geq g_1 \geq g_2 \geq \cdots$$

and $g_i = \tilde{g}$ for sufficiently large i. For such i, the curve X_i is smooth.

Proof. First, notice that for $i \geq 0$,

$$K^{1/p_i}(\overline{X_{K^{1/p_i}}}) = K^{1/p_i} \cdot K(X) \cong K \cdot K(X)^p = K(X_i),$$

so $g_i = g(\overline{X_{K^{1/p_i}}})$. Then,

$$g_i = g(\overline{X_{K^{1/p_i}}}) = g\left((\overline{X_{K^{1/p_i}}})^{K^{1/p^{i+1}}_p}\right) \geq g\left((\overline{X_{K^{1/p^{i+1}}_p}})^{K^{1/p^{i+1}}_p}\right) = g(\overline{X_{K^{1/p^{i+1}}_p}}) = g_{i+1}$$

(e.g., [3], exercise IV.1.8). Now, $\overline{X_{\overline{R}}}$ is smooth and definable over some finite extension L of K, so $\overline{X_L}$ is smooth. Let M be the maximal subextension of L that is separable over K. Then, $L^{p^e} \subset M$ for some e, so $\overline{X_{M^{p^{-e}}}}$ is smooth. Regular curves remain regular after base changing to a finite separable field extension (see [1], XV.5, Theorem 22), and $M^{p^{-e}}$ is separable over $K^{p^{-e}}$, so $\overline{X_{K^{p^{-e}}}}$ is smooth. Thus, $g_i = \tilde{g}$ and X_i is smooth for all $i \geq e$. \qed

Proposition 3.4. Suppose there exists an algorithm that takes in Input 2.1 as well as the extra input

-(vi) a geometrically integral, smooth, projective curve Y over K_0 with $g(Y) = g(\overline{X_{K}})$ together with a degree p inseparable morphism $\pi : X \to Y$ over K_0.

and computes $X(K)$. Then there exists an algorithm to compute $X(K)$ without assuming (vi). Furthermore, assuming (vi), choose any $z \in K_0(X) \setminus K_0(Y)$ and $r := z^p \in K_0(Y)$. If there exists an algorithm to compute the set

$$\{P \in Y(K) \mid r \text{ is regular at } P \text{ and } r(P) \in K^p\},$$

then there exists an algorithm to compute $X(K)$.
Proof. Let X_i be the normalization of $X^{(p^r)}$. Then $K_0(X_i) = K_0 \cdot K_0(X_i)^{p^r}$. Compute the curves X_i for $i = 1, 2, 3, \ldots, n$, where n is the smallest positive integer such that X_n is smooth, which exists by Proposition 3.3. The relative Frobenius morphisms lift to a sequence of morphisms

$$X = X_0 \to X_1 \to X_2 \to \cdots \to X_{n-1} \to X_n.$$

The curve X_{n-1} is nonsmooth and the morphism $X_{n-1} \to X_n$ satisfies the condition in (vi). Thus, use the presumed algorithm to compute $X_{n-1}(K)$. Then, compute $X(K)$ by computing preimages in the above sequence of morphisms.

Now, assume (vi) and choose any z as in the statement of the proposition. Let $V \subset Y$ be the maximal affine open subset on which r is regular, let $U := \pi^{-1}(V) \subset X$, and let

$$W := \{(w, P) \in \mathbb{A}^1_{K_0} \times V \mid w^p = r(P)\}.$$

Considering r as a morphism $Y \to \mathbb{P}^1_{K_0}$, compute the poles of $r \circ \pi$ that are K-points of X. These are the K-points in $X \setminus U$, so all that remains is to compute $U(K)$. The morphism $W \to V \to Y$ induces a bijection

$$W(K) \to \{P \in Y(K) \mid r \text{ is regular at } P \text{ and } r(P) \in K^p\}.$$

Therefore, compute $W(K)$ using the presumed algorithm. Lastly, compute $U(K)$ by computing preimages in the (normalization) K_0-morphism morphism $U \to W$ defined by $Q \mapsto (z(Q), \pi(Q))$.

Remark 3.5. Let X be as in Proposition 3.4(i) and L_0 be a finite separable extension of K_0 with $L := kL_0$. To compute $X(K)$, it suffices to compute $X(L)$ and then determine which points are K-points. In this case, X_{L_0} is again regular but not smooth [1], and $\pi_{L_0} : X_{L_0} \to Y_{L_0}$ is purely inseparable of degree p.

Lemma 3.6. Let K be a field of characteristic p that is separably generated over a field k, and let D be the set of k-derivations of K. If $\alpha \in K$, then $\alpha \in kK^p$ if and only if $\delta \alpha = 0$ for all $\delta \in D$. Furthermore, if V is a variety over kK^p, then each $\delta \in D$ can be extended to a k-derivation of \mathcal{O}_{V_K} such that

$$\bigcap_{\delta \in D} \ker(\delta : \mathcal{O}_{V_K} \to \mathcal{O}_{V_K}) = \mathcal{O}_V$$

(here, $V_K \to V$ is a homeomorphism, so we consider \mathcal{O}_{V_K} and \mathcal{O}_V to be sheaves on the same topological space). If $\delta \in D$ and $U \subset V_K$, then the extension of δ to $\mathcal{O}_{V_K}(U)$ will be denoted $v \mapsto v^\delta$.

Proof. If $\alpha = \beta^p$, then $\delta \alpha = p^\beta \delta \beta = 0$. Conversely, suppose $\delta \alpha = 0$ for all δ. By assumption, there exists a transcendence basis $\{t_i\}_{i \in I}$ of K over k such that K is a separable algebraic extension of $k(\{t_i\}_{i \in I})$. By Lemma 3.1, K is a purely inseparable algebraic extension of kK^p with $K = kK^p(\{t_i\}_{i \in I})$. Write $\alpha = \sum c_j t^i$, where $j \in \{0, 1, \ldots, p-1\}^I$, $t^i = \prod_{i \in I} t_i^{l_i}$, and $c_j \in kK^p$. If δ_i is the derivation of K such that $\delta_i t_i = 1$ and $\delta_i t_{i'} = 0$ for all $i' \neq i$, then $0 = \delta_i \alpha = \sum_j j_i c_j t_j^{i-1}$, where l_i is the index with 1 in the ith entry and 0
in every other entry. Thus, \(c_j = 0 \) for all \(j \) such that \(j_i \neq 0 \) for some \(i \neq 0 \). In other words, \(\alpha \in kK^p \).

Now note that \(\mathcal{O}_V = \mathcal{O}_V \otimes \mathcal{O}_K \otimes kK^p \) \(K^p \). If \(U \subset V \) is an open subset, then extend \(\delta \) to \(\mathcal{O}_V(U) \) by \(v \otimes u \mapsto v \otimes \delta u \) for \(v \in \mathcal{O}_V(U) \) and \(u \in K \). Thus

\[
\bigcap_{\delta \in D} \ker (\delta : \mathcal{O}_V \to \mathcal{O}_K) = \mathcal{O}_V \otimes \mathcal{O}_K \bigcap_{\delta \in D} \ker (\delta : K \to K) = \mathcal{O}_V \otimes \mathcal{O}_K \otimes kK^p = \mathcal{O}_V.
\]

\(\square \)

Remark 3.7. If \(K \) is finitely generated over a perfect field \(k \) of characteristic \(p \), then \(K \) is separably generated over \(k \) (e.g., [5], Corollary 4.4). Furthermore, from the proof of Lemma 3.6, we see that to check \(\delta \alpha = 0 \) for all \(\delta \), it suffices to check \(\delta_i \alpha = 0 \) for all \(i \). Similarly, \(\nu^\delta = 0 \) for all \(\delta \) if and only if \(\nu^\delta_i = 0 \) for all \(i \).

Proposition 3.8. There exists an algorithm that takes in Input 2.1, (vi) and the morphism \(r \) from Proposition 3.4, a smooth projective curve \(Z \) over \(K_0 \), and an inseparable \(K_0 \)-morphism \(f : Z \to Y \) and computes the set

\[
\{ P \in Y(K) \mid r \text{ is regular at } P, r(P) \in K^p, \text{ and } P = f(Q) \text{ for some } Q \in Z(K) \}.
\]

Proof. View \(r \) as a morphism \(Y \to \mathbb{P}^1_{K_0} \). The composition \(r \circ f \) is inseparable, so it factors as \(r \circ f = s \circ F \), where \(F : Z \to Z^{(p)} \) is the relative Frobenius morphism and \(s \) is some morphism \(s : Z^{(p)} \to \mathbb{P}^1_{K_0} \). Explicitly, \(Z^{(p)} \) is defined by the same polynomials as \(Z \) but with their coefficients raised to the \(p \)th power. Compute the morphism \(s \). Let \(V \) be the curve defined over \(K_0^p \) given by the same polynomials as \(Z^{(p)} \), so that \(Z^{(p)} \simeq V_{K_0} \). Let \(\delta_1, \ldots, \delta_m \) be the derivations of \(K_0 \) corresponding to \(t_1, \ldots, t_m \). Because \(Z \) is smooth, \(V \) is smooth and therefore geometrically reduced. So, extend \(\delta_1, \ldots, \delta_m \) to derivations of \(K_0(V) = K_0(Z^{(p)}) \) as in Lemma 3.6. Let \(U \) be the maximal affine open subset of \(Z \) on which \(r \circ f \) is regular, and compute an embedding \(U \to \mathbb{A}^n_{K_0} \).

If \((\alpha_1, \ldots, \alpha_n) \in U(K) \). Then,

\[
\delta_i(r(f(\alpha_1, \ldots, \alpha_n))) = \delta_i(s(\alpha_1^p, \ldots, \alpha_n^p))
\]

\[
= \sum_{i=1}^n \frac{\partial s}{\partial x_i}(\alpha_1^p, \ldots, \alpha_n^p)\delta_i \alpha_i^p + s^{\delta_i}(\alpha_1, \ldots, \alpha_n).
\]

Now, we claim that \(s^{\delta_i} \neq 0 \) for some \(i \). Suppose the contrary. Then, Remark 3.7 says \(s \in K_0^p(V) \), so \(s \circ F \in K_0(Z)^p \). Let \((s \circ F)^{1/p} \in K_0(Z) \) be its \(p \)th root. Then, there exists a nonconstant morphism \(Z \to X \) defined on \(U \) by

\[
P \mapsto ((s \circ F)^{1/p}(P), f(P)).
\]

But, \(Z \) is smooth, which would imply \(X \) is smooth ([11], Lemma 0CCW). This is false by assumption, so \(s^{\delta_i} \neq 0 \) for some \(i \). Thus, let \(S \) be the zero set of all the \(s^{\delta_i} \circ F \) on \(Z \) so that

\[
S(K) = \{ P \in Z(K) \mid r \circ f \text{ is regular at } P \text{ and } r(f(P)) \in K^p \}.
\]

\(S \) is a 0-dimensional \(K_0 \)-variety, so compute \(S(K) \). Lastly, apply \(f \) to the elements of \(S(K) \) to get the set stated in the proposition. \(\square \)
Lemma 3.9. Let K be a field of characteristic p, let X be a geometrically integral regular curve over K, and let x be a closed point of X. Let L and K' be finite extensions of K that are linearly disjoint over K. Let $L' := LK'$. Let $x_{L'} \in (\widetilde{X}_{K'})_{L'}$ be in the preimage of x and x_L its image in X_L. If x_L is not a regular point of X_L, then $x_{L'}$ is also not a regular point of $(\widetilde{X}_{K'})_{L'}$. Therefore, if x_L is nonregular, then $(\widetilde{X}_{K'})_{L'}$ is nonregular.

Proof. We first prove this in the case where L/K is a finite purely inseparable extension of degree p generated by an element t. In this case, the morphism $X_L \rightarrow X$ is a homeomorphism on the level of topological spaces. Therefore,

$$O_{X_L,x_L} = \lim_{U \ni x_L} O_{X_L}(U) = \lim_{V \ni x} O_{X_L}(V) = (\lim_{V \ni x} O_X(V) \otimes_K L) = (\lim_{V \ni x} O_X(V)) \otimes_K L = O_{X,x} \otimes_K L.$$ (3.1)

By assumption, O_{X_L,x_L} is not a regular local ring, so there exists some element $g \in O_{X_L,x_L}$ (the normalization of O_{X_L,x_L}) that is not in O_{X_L,x_L}. Write

$$g = g_0 + g_1 t + \cdots + g_{p-1} t^{p-1},$$

where $g_i \in K(X)$. Let $x_{K'} \in \widetilde{X}_{K'}$ be the image of $x_{L'}$. For any i, if $g_i \in O_{\widetilde{X}_{K'},x_{K'}}$, then $g_i \in O_{X,x}$ because $O_{\widetilde{X}_{K'},x_{K'}}$ is integral over $O_{X,x}$ and $O_{X,x}$ is a regular local ring. Therefore, because $g \notin O_{X_L,x_L}$, there must be some i for which $g_i \notin O_{\widetilde{X}_{K'},x_{K'}}$. But, because L and K' are linearly disjoint over K, we also have $[L':K'] = p$, $L' = K'(t)$, and $O_{(\widetilde{X}_{K'})_{L'},x_{L'}} = O_{\widetilde{X}_{K'},x_{K'}} \otimes_K L'$. This proves that $g \notin O_{(\widetilde{X}_{K'})_{L'},x_{L'}}$. But, g is integral over $O_{(\widetilde{X}_{K'})_{L'},x_{L'}}$, so $O_{(\widetilde{X}_{K'})_{L'},x_{L'}}$ is not a regular local ring, i.e., $x_{L'}$ is not a regular point.

Now, consider the case of general L. Let M_0/K be the maximal separable subextension of L. Consider a tower of fields

$$M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = L$$

such that $[M_i : M_{i-1}] = p$ for all $1 \leq i \leq n$. For each i, let x_{M_i} be the image of x_L in X_{M_i}. We know x_{M_0} is a regular point because M_0 is separable over K. Thus, there exists some $1 \leq j \leq n$ such that $x_{M_{j-1}}$ is a regular point and x_{M_j} is not a regular point. Let $y_{L'} \in (\widetilde{X}_{M_{j-1}K'})_{L'}$ be a preimage of $x_{L'}$ and $x_{M_jK'} \in (\widetilde{X}_{M_{j-1}K'})_{M_jK'}$ its image. By the previous paragraph, $x_{M_jK'}$ is a nonregular point, making $y_{L'}$ a nonregular point as well. The morphism $(\widetilde{X}_{M_{j-1}K'})_{L'} \rightarrow (\widetilde{X}_{K'})_{L'}$ is a birational morphism of curves. Therefore, $x_{L'}$ cannot be a regular point. \hfill \Box

Corollary 3.10. Let K be a field of characteristic p, let X be a geometrically integral regular curve over K, and let x be a closed point of X. Let L/K be an algebraic extension linearly disjoint with the residue field of x. Then every point in the preimage of x in X_L is a regular point.

Proof. Let $x_L \in X_L$ be in the preimage of x. Let K' be the residue field of x, and let $L' := LK'$. Let $x_{L'} \in (\widetilde{X}_{K'})_{L'}$ be in the preimage of x_L and $x_{K'} \in \widetilde{X}_{K'}$ the image of $x_{L'}$. Because $x_{K'}$ is a regular degree 1 point, it must be a smooth point (the proof is the same
as the proof that regular implies smooth over an algebraically closed field, e.g., [3], Theorem I.5.1). Therefore, \(x_{L'} \) is regular.

If \(L/K \) is a finite extension and \(x_L \) were nonregular, then \(x_{L'} \) would be nonregular by Lemma 3.9. Thus, \(x_L \) is regular.

\[\square \]

Remark 3.11. Fix an algebraic closure \(\overline{K} \) with inclusions \(L, K' \subset \overline{K} \). The hypothesis that \(L \) and \(K' \) are linearly disjoint can be replaced by the hypothesis that \(L \cap K' \) is a separable extension of \(K \). This is because \(X_{L\cap K'} \) is regular and \(L \) and \(K' \) are linearly disjoint over \(L \cap K' \), so we can just apply Corollary 3.10 with \(K \) replaced by \(L \cap K' \).

Proposition 3.12. There exists an algorithm that takes in Input 2.1 and computes a finite subset \(S \) of \(\overline{K}_0 \), with \(k'_0 := k_0(S) \) and \(K'_0 := k'_0 \overline{K}_0 \), and a smooth, connected curve \(C \) over \(k'_0 \) such that

(i) the largest algebraic extension of \(k'_0 \) in \(K'_0 \) is \(k'_0 \),

(ii) \(K'_0 = k'_0(C) \), and

(iii) \((\overline{X_{K'_0}})_{\overline{K}_0}\overline{K}_0 \) is regular but not smooth.

Proof. First, find nonnegative integers \(e_1, \ldots, e_m \) and \(1 \leq j \leq m \) with \(F := k_0(t_1^{p^{-e_1}}, \ldots, t_m^{p^{-e_m}}) \) and \(L := k_0(t_1^{p^{-e_1}}, \ldots, t_j^{p^{-e_j}}, \ldots, t_m^{p^{-e_m}}) \) such that \(X_F \) is regular but \(X_L \) is not. This is possible because \(X \) is regular and \(X_{K_{p^{-e}}} \) is nonregular for some \(e \) by Proposition 3.3. After renaming \(t_1, \ldots, t_m \), we may assume \(j = 1 \).

Determine a primitive element \(u \) for \(K_0 \) over \(k_0(t_1, \ldots, t_m) \) and its minimal polynomial \(g \in k_0(t_1, \ldots, t_m)[x] \). Compute an irreducible factor \(g_1 \) of \(g \) in \(k_0(t_2, \ldots, t_m)(t_1)[x] \), and write

\[
g_1 = \frac{\sum w_i t_1^i x_j}{\sum w_i t_1^i}
\]

with \(v_{ij}, w_i \in k_0(t_2, \ldots, t_m) \). Let \(S \) be the set of all \(v_{ij} \) and \(w_i \) together with \(t_2^{p^{-e_2}}, \ldots, t_m^{p^{-e_m}} \). Let \(k'_0 \) and \(K'_0 \) be as in the statement of the proposition. This \(g' \) defines a geometrically integral curve \(U \) over \(k'_0 \) embedded as a locally closed subvariety of \(\mathbb{A}^2_{k'_0} \). Compute the normalization \(C \) of the projective closure of \(U \). Now, \(C \) may not be smooth. To fix this, repeatedly replace \(S \) by the set of all \(p \)th roots of elements of \(S \) and replace \(C \) by its normalization in the enlarged field \(k'_0 \) until \(C \) is smooth, which again works by Proposition 3.3. Now, \((\overline{X_{K'_0}})_{\overline{K}_0}\overline{K}_0 \) may not be regular. To fix this, first compute the residue fields \(\ell_1, \ldots, \ell_s \) of the nonsmooth points of \(\overline{X_{K'_0}} \). Then, determine the maximum integer \(N \) such that for some \(1 \leq i \leq s \) and \(2 \leq j \leq m \), the field \(\ell_i \) contains \(t_j^{p^{-N}} \). Replace \(S \) by the set of \(p^N \)th roots of elements of \(S \). Now, for all \(i \), the field \(\ell_i \cap \overline{K}_0 \) inside any fixed algebraic closure \(\overline{K}_0 \) must be separable over \(k'_0 \). Therefore, by Remark 3.11, \((\overline{X_{k'_0}})_{\overline{K}_0}\overline{K}_0 \) is regular.

Note that \(L \) and \(k'_0 F \) are linearly disjoint over \(F \) because \(k'_0 F \) does not contain a \(p \)th root of \(t_1^{p^{-e_1}} \). Therefore, by Lemma 3.9, the curve \((\overline{X_{k'_0}})_{\overline{K}_0} \) is nonregular, so \(\overline{X_{k'_0}} F \) is not smooth. But, \(K'_0 \subset k'_0 F \), so \(\overline{X_{K'_0}} \) is not smooth. \(\square \)
Remark 3.13. Assume the notation in Input 2.1. Proposition 3.12 says that if we replace \(k_0 \) by \(k'_0 \) and \(K_0 \) by \(K'_0 \), we may reduce the problem of computing \(X(K) \) to the case where the transcendence degree of \(K \) over \(k \) is 1.

In light of Proposition 3.4 and Proposition 3.12, we define the following input to be used instead of Input 2.1.

Input 3.14.

(i) a prime number \(p \),

(ii) a field \(k_0 \) finitely generated over \(\mathbb{F}_p \), with \(k := \overline{k}_0 \),

(iii) a smooth, geometrically connected curve \(C \) over \(k_0 \), with \(K_0 := k_0(C) \) and \(K := kK_0 \),

(iv) a geometrically integral, nonsmooth, projective curve \(X \) over \(K_0 \) such that \(X_K \) is regular, and

(v) a geometrically integral, smooth, projective curve \(Y \) over \(K_0 \) with \(g(Y) = g(\overline{X_K}) \) together with a degree \(p \) inseparable morphism \(\pi : X \to Y \) over \(K_0 \).

The proof of Theorem 1.1 will handle the cases where \(Y_K \) is isotrivial and \(Y_K \) is non-isotrivial separately. Here, a curve \(Z \) over \(K \) is called isotrivial if there exists a curve \(Z_0 \) over \(k \) and a finite extension \(L/K \) such that \(Z_L \cong (Z_0)_L \).

Proposition 3.15. There exists an algorithm that takes in (i)-(iii) of Input 3.14 and a smooth connected projective curve \(Y \) over \(K_0 \) and determines whether \(Y_K \) is isotrivial. Furthermore, if \(Y_K \) is isotrivial, the algorithm computes a finite extension \(\ell_0/k_0 \), a finite separable extension \(L_0/K_0 \) such that the algebraic closure of \(k_0 \) in \(L_0 \) is \(\ell_0 \), a curve \(Y_0 \) over \(\ell_0 \), and an isomorphism \(\phi : Y_{L_0} \to (Y_0)_{L_0} \).

Proof. Compute the genus \(g := g(Y) \). If \(g = 0 \), then \(Y \) is isotrivial. In this case, choose any point \(P \in Y(L_0) \), where \(L_0/K_0 \) is a finite separable extension. Then, compute a basis \(\{1, \phi\} \) for \(H^0(Y_{L_0}, \mathcal{O}_{Y_{L_0}}(P)) \). The nonconstant function \(\phi \) can then be thought of as an isomorphism \(Y_{L_0} \to \mathbb{P}^1_{L_0} \). Compute the algebraic closure \(\ell_0 \) of \(k_0 \) in \(L_0 \) and set \(Y_0 := \mathbb{P}^1_{\ell_0} \).

If \(g = 1 \), then first choose any \(P \in Y(L'_0) \), where \(L'_0/K_0 \) is a finite separable extension and compute the algebraic closure \(\ell'_0 \) of \(k_0 \) in \(L'_0 \). Then, compute a basis \(\{1, x, y\} \) for \(H^0(Y_{L'_0}, \mathcal{O}_{Y_{L'_0}}(3P)) \) to put \(Y_{L'_0} \) into Weierstrass form

\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.
\]

Then \(Y_K \) is isotrivial if and only if its \(j \)-invariant \(j(Y_{L'_0}) \) is in \(\ell'_0 \). Suppose this is the case. Construct an elliptic curve \(Y'_0 \) over \(\ell'_0 \) such that \(j(Y_0) = j(Y_{L'_0}) \) as in [10], Proposition III.1.4c. Compute a finite extension \(L_0/L'_0 \) and an isomorphism \(\phi : Y_{L_0} \to (Y_0)_{L_0} \) as in [10], Proposition III.1.4b or Proposition A.1.2b. Note that in this construction \(L_0 \) will be separable over \(L'_0 \). Compute the algebraic closure \(\ell_0 \) of \(\ell'_0 \) in \(L_0 \) and set \(Y_0 := (Y_0)_{\ell_0} \).

If \(g \geq 2 \), then suppose \(Y \subset \mathbb{P}^3_K \). Compute the Jacobian matrix \(J \) for the defining equations for \(Y \). Determine an open subset \(U \subset C \) on which the entries of \(J \) are regular.
functions and that J has rank \(n - 1 \). The equations for \(Y \) give rise to a smooth family \(\pi: Y \to U \) whose generic fiber is \(Y \). Choose any point \(P \in U(U_0) \) for some separable extension \(U'_0 \) of \(k_0 \). Let \(Y'_0 := \pi^{-1}(P) \). Now, let \(L'_0 := \ell'_0 K_0 \) and embed \(Y'_0 \) and \((Y_0)_{L_0} \) in \(\mathbb{P}^N_{L_0} \) via the tricanonical embedding. Compute the equations an element \(\phi \in \text{PGL}_{N+1}(K) \) must satisfy to map \(Y_{\mathbb{P}} \) to \((Y_0)_{\mathbb{P}} \) to get an \(L'_0 \)-scheme \(Z \subset (\text{PGL}_{N+1})_{L'_0} \) isomorphic to \(\text{Isom}(Y'_0, (Y_0)_{L'_0}) \), which is 0-dimensional by de Franchis’s Theorem. Now, \(Y_k \) is isotrivial if and only if \(Z \) is nonempty. Suppose this is the case. \(Z \) is an \(\text{Aut}(Y'_0) \)-torsor over \(L'_0 \), and \(\text{Aut}(Y'_0) \) is étale over \(L'_0 \) because \(H^0(Y'_0, T_{Y'_0}) = 0 \) (see [11], Lemma 0DSW and Lemma 0E6G). This means there must be some \(\phi \in \mathbb{P}(L'_0) \), where \(L_0/L'_0 \) is a finite separable extension. Compute the algebraic closure \(\ell_0 \) of \(\ell'_0 \) in \(L_0 \) and set \(Y_0 := (Y'_0)_{L_0} \).

The following is a partial converse to the second part of Lemma 3.6 that will be needed in the absolute genus at least two case.

Proposition 3.16. Let \(k \) be a field of characteristic \(p \) and \(C \) be a smooth curve over \(k \) with \(K := k(C) \). Let \(\delta \) be a nonzero \(k \)-derivation of \(K \). Let \(Y \) be a geometrically integral curve over \(K \) with generic point \(\eta \). Suppose \(\delta \) extends to a \(k \)-derivation \(\tilde{\delta} \) of \(O_Y \) with kernel \(O' \) such that \(kK(Y)^p \subsetneq O'_\eta \). Then the ringed space \(Y' := (\text{sp}(Y), O') \) is a \(kK'^p \)-variety such that \(Y \cong Y'_{\tilde{K}} \) (here \(\text{sp}(Y) \) denotes to the topological space of \(Y \)).

If \(Y \) is a smooth curve of genus at least two, then there is at most one extension of \(\delta \) to a \(k \)-derivation \(\tilde{\delta} \) of \(O_Y \). Furthermore, in the case that \(\tilde{\delta} \) exists, it is automatically true that \(kK(Y)^p \subsetneq O'_\eta \).

Proof. Choose an element \(t \in K \setminus kK^p \). The statement remains unchanged if we replace \(\delta \) by \(\frac{1}{\delta t} \), so we may assume \(\delta t = 1 \). Define the homomorphism \(\phi: O' \otimes_{kkK^p} K \to O_Y \) of sheaves of \(K \)-algebras given by \(r \otimes u \mapsto ur \) for \(r \in O'(U) \) and \(u \in K \). We will show that \(\phi \) is an isomorphism. Let \(r \in (O' \otimes_{kkK^p} K)(U) \) be in the kernel of \(\phi \). We may write \(r = \sum_{i=0}^{p-1} r_i \otimes t^i \), where \(r_i \in O'(U) \). Then \(0 = \phi(r)^\delta = \sum_{j=0}^{p-1} j r_i t^{i-1} \), which forces \(r = r_0 \otimes 1 \). This then implies \(r = 0 \), so \(\phi \) is injective. Now choose any \(s \in O_Y(U) \). We have

\[
K \cdot K(Y)^p = kK(Y)^p \otimes_{kkK^p} K \subsetneq O'_\eta \otimes_{kkK^p} K \subset K(Y).
\]

But \([K(Y) : K \cdot K(Y)^p] = p \), so \(O'_\eta \otimes_{kkK^p} K = K(Y) \). Therefore we can write \(s = \sum_{i=0}^{p-1} s_i t^i \) for \(s_i \in O'_\eta \). Suppose \(s_j \notin O_Y(U) \) for some \(j \), and assume \(j \) is maximal. Then

\[
\sum_{i=0}^{j-1} s_i t^i = s - \sum_{i=j+1}^{p-1} s_i t^i \in O_Y(U),
\]

so

\[
s_j = \frac{1}{j!} \left(\sum_{i=0}^{j} s_i t^i \right)^{\delta_j} \in O_Y(U).
\]

This is a contradiction, so \(s_i \in O_Y(U) \) and therefore \(s_i \in O'(U) \) for all \(i \). This proves that \(\phi \) is surjective.

Let \(U \subset Y \) be an affine open subset and \(s \in O_Y(U) \) be nonzero. If \(r \in O'(D(s)) \), then there exists some \(r' \in O_Y(-U) \) and an integer \(i \geq 0 \) such that \(r = r'/s^p \). Then
0 = r^δ = (r')^δ/s^p, so (r')^δ = 0. This shows that \(\mathcal{O}'(D(s)) = \mathcal{O}'(U)_p \), so we have an isomorphism of ringed spaces \((U, \mathcal{O}'|_U) \cong \text{Spec} \mathcal{O}'(U)\). Therefore, the topological space of \(Y \) together with \(\mathcal{O}' \) defines a \(kK^p \)-variety \(Y' \) such that \(Y \cong Y'_K \).

Now suppose \(Y \) is smooth and has genus at least two. Suppose \(\tilde{\delta} \) and \(\tilde{\delta}' \) are two extensions of \(\delta \) to \(\mathcal{O}_Y \). Then \(\tilde{\delta} - \tilde{\delta}' \) is a \(K \)-derivation of \(\mathcal{O}_Y \). But \(\text{Der}_K(\mathcal{O}_Y, \mathcal{O}_Y) = H^0(Y, \mathcal{T}_Y) = 0 \), so \(\tilde{\delta} = \tilde{\delta}' \). The product rule for derivations generalizes to
\[
\tilde{\delta}^n(r s) = \sum_{i=0}^{n} \binom{n}{i} \tilde{\delta}^i(r) \tilde{\delta}^{n-i}(s).
\]
Taking \(n = p \) we see that \(\tilde{\delta}^p \) is also \(k \)-derivation. Furthermore \(\delta^p(t^i) = 0 \) for all \(i \), so \(\tilde{\delta}^p \) is actually a \(K \)-derivation. Thus, as before, \(\tilde{\delta}^p = 0 \). Let \(\tilde{\delta}_\eta \) denote the \(k \)-derivation on \(K(Y) \).

Let \(\{\alpha_1, \alpha_2, \ldots, \alpha_M\} \) be a subset of elements of \(K(S, p) \) that map bijectively to the image of \(K(S, p) \to (\mathbb{Z}/p)^S, \quad \alpha \mapsto (p \text{ord}_\xi \alpha \text{ (mod } p))_{\xi \in S} \), and let \(\{\alpha_1, \ldots, \alpha_M\} \) be lifts in \(K^\times \). If \(\text{Pic}_C[p] = \{D_1, \ldots, D_N\} \), then choose \(\beta_j \in K^\times \) such that \(\text{div} \beta_j = pD_j \). Then \(\tilde{\delta}_\eta \) has rank \(p^2 - 1 \) as a \(kK(Y)^p \)-linear map. This implies that \(\delta^p_\eta \) has rank at least \(p^2 - p \), a contradiction. \(\square \)

4 Curves of absolute genus zero

Lemma 4.1. Let \(k \) be a perfect field, and let \(K = k(C) \) for a smooth curve \(C \) over \(k \). Let \(S \) be a finite set of places of \(K \) and
\[
K(S, p) = \{v \in K^\times/K^{\times p} \mid p \text{ord}_\xi v \text{ for } \xi \notin S\}.
\]
Let \(\{\overline{\alpha}_1, \overline{\alpha}_2, \ldots, \overline{\alpha}_M\} \) be a subset of elements of \(K(S, p) \) that map bijectively to the image of \(K(S, p) \to (\mathbb{Z}/p)^S, \quad \overline{\alpha} \mapsto (p \text{ord}_\xi \alpha \text{ (mod } p))_{\xi \in S} \), and let \(\{\alpha_1, \ldots, \alpha_M\} \) be lifts in \(K^\times \). If \(\text{Pic}_C[p] = \{D_1, \ldots, D_N\} \), then choose \(\beta_j \in K^\times \) such that \(\text{div} \beta_j = pD_j \). Then, any element \(v \in K^\times \) with \(p \text{ord}_\xi v \) for all \(\xi \notin S \) is of the form \(v = \alpha_i \beta_j u^p \) for some \(u \in K \).

Proof. From the exact sequence
\[
0 \longrightarrow K^\times_{K^{\times p}} \longrightarrow \text{Div} C \longrightarrow \text{Pic} C \longrightarrow 0
\]
we have
\[
0 \longrightarrow \text{Pic} C[p] \longrightarrow K^\times_{K^{\times p}} \longrightarrow \frac{\text{Div} C}{p \text{Div} C} \longrightarrow \frac{\text{Pic} C}{p \text{Pic} C} \longrightarrow 0 \quad (4.1)
\]

Let \(\text{Div}_S C \) be the free abelian group generated by places not in \(S \), and let \(\text{Pic}_S C \) be the quotient of \(\text{Div}_S C \) by the image of \(K^\times \). From the diagram
\[
\begin{array}{ccc}
0 & \longrightarrow & 0 \\
\downarrow & & \downarrow \\
K^\times_{K^{\times p}} & \longrightarrow & K^\times_{K^{\times p}} \\
\downarrow & & \downarrow \\
\text{Div} C & \longrightarrow & \text{Div}_S C \\
\downarrow & & \downarrow \\
(\mathbb{Z}/p)^S & \longrightarrow & \frac{\text{Div} C}{p \text{Div} C} \\
\end{array}
\]

\[
0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0
\]
and (1), the snake lemma gives

\[
0 \longrightarrow \text{Pic} C[p] \xrightarrow{} K(S, p) \xrightarrow{} (\mathbb{Z}/p)^S \xrightarrow{} \text{Pic} C \xrightarrow{p} \text{Pic} C \longrightarrow 0
\] (4.2)

This says that \(K(S, p) \) is the set of residue classes of all \(\alpha_i\beta_j \) in \(K^\times/K^\times_p \). From this, the lemma follows.

Remark 4.2. If \(k \) is algebraically closed, the degree map \(\text{deg} : \text{Pic} C/p\text{Pic} C \rightarrow \mathbb{Z}/p \) is an isomorphism of groups. Therefore, from (4.2) above, we see that the image of \(K(S, p) \rightarrow (\mathbb{Z}/p)^S \) is the set \(\{(a_s)_{s \in S} \mid \sum_{s \in S} a_s = 0\} \). Therefore, computing all elements of this set and finding preimages in \(K(S, p) \) allows us to compute \(\alpha_1, \ldots, \alpha_M \).

Proof of Theorem 1.1, assuming \(\tilde{g} = 0 \). Assume Input 3.14. First, as in Proposition 3.15, determine a finite separable extension \(L_0 \) of \(K_0 \) such that \(Y_{L_0} \cong \mathbb{P}^{1}_{L_0} \), and let \(x \in L_0(Y) \) be such that \(L_0(Y) \cong L_0(x) \). Set \(V = \mathbb{A}^1_{L_0} \subseteq Y \) and \(U = \pi^{-1}(V) \subseteq X \). As in Proposition 3.4, take \(z \in \mathcal{O}_X(U) \) with \(z \notin L_0(Y) \) and \(r = z^p \in \mathcal{O}_Y(V) = L_0[x] \). Next, determine a finite separable extension \(L_1 \) of \(L_0 \) such that

\[
r = \gamma(x - \alpha_1)^{e_1}(x - \alpha_2)^{e_2} \cdots (x - \alpha_{m_1})^{e_{m_1}}(x^{p^{f_1}} - \beta_1)^{f_1}(x^{p^{f_2}} - \beta_2)^{f_2} \cdots (x^{p^{f_{m_2}}} - \beta_{m_2})^{f_{m_2}},
\] (4.3)

where \(\gamma, \alpha_i, \beta_j \in L_1, \gamma \neq 0, \) and \(\ell_i \geq 1 \). For simplicity, we invoke Remark 3.5 and replace \(K_0 \) by \(L_1 \) for the remainder of the proof.

First, consider the case where \(p|e_i \) for all \(i \). Then, for some \(\ell \in K_0[x] \), we have \(r(x) = s(x^p) = s(F(x)) \). Using Proposition 3.8 with \(Z := \mathbb{P}^1_{K_0} \) and \(f := F \) together with 3.4 to compute \(X(K) \). Next consider the case where \(e_i \neq 0 \) (mod \(p \)) for some \(i \). Then, because

\[
eq e_1 + e_2 + \cdots + e_{m_1} + p^{f_1}f_1 + p^{f_2}f_2 + \cdots + p^{f_{m_2}}f_{m_2} + \text{ord}_\infty r = 0,
\]
either \(\text{ord}_\infty r \neq 0 \) (mod \(p \)) or \(e_j \neq 0 \) (mod \(p \)) for some \(j \neq i \). In either case, replace \(x \) by a linear fractional transformation to assume that \(\text{ord}_0 r \neq 0 \) (mod \(p \)) and \(\text{ord}_\infty r \neq 0 \) (mod \(p \)). Then, write \(r = r_1/r_2 \) for some polynomials \(r_1 \) and \(r_2 \). Replace \(r \) with \(r_2^p \) and \(z \) with \(r_2^p \) to assume \(r \) is again a polynomial in \(x \). Now, forget the notation in (4.3) and write

\[
r = \alpha_{m_1}x^{m_1} + \alpha_{m_1+1}x^{m_1+1} + \cdots + \alpha_{m_2}x^{m_2},
\] (4.4)

where \(\alpha_{m_1}, \alpha_{m_2} \neq 0 \) and \(m_1m_2 \neq 0 \) (mod \(p \)). Compute the finite set \(S \) of places \(\xi \) of \(K \) such that \(\text{ord}_\xi \alpha_i \neq 0 \) for some \(i \). If \(\xi \) is a place of \(K \) not in \(S \) and \(w \in K \), then the only possible slopes in the Newton polygon for \(r - w^p \) are 0, \(-p(\text{ord}_\xi w)/m_1 \), or \(-p(\text{ord}_\xi w)/m_2 \). This shows that for \(\xi \notin S \), if \(v \in K \) and \(r(v) \in K^p \), then \(p|\text{ord}_\xi v \). We know \(r(0) = 0 \in K^p_0 \), so by Proposition 3.4, it suffices to show \(\{v \in K^\times \mid r(v) \in K^p\} \) is finite and computable.

Apply Lemma 4.1 and Remark 4.2 to compute elements \(\alpha_i, \beta_j \in K^\times \) such that \(v = \alpha_i\beta_jw^p \) if \(p|\text{ord}_\xi v \) for all \(\xi \notin S \). Choose specific \(i \) and \(j \), and define \(g_{ij} : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \) by \(u \mapsto \alpha_i\beta_ju \). Using Proposition 3.8 with \(Z := \mathbb{P}^1_{K_0} \) and \(f := g_{ij} \circ F \), compute

\[
\{v = \alpha_i\beta_jw^p \in K^\times \mid r(v) \in K^p\}.
\]

Doing this for each of the finitely many \(i \) and \(j \) finishes the proof.

5 Curves of absolute genus one

Proposition 5.1. Let k be an algebraically closed field with finite transcendence degree over its prime field and C and D be smooth, geometrically connected curves over k. Let J_C and J_D denote the Jacobians of C and D respectively. Then there exists an algorithm to compute a (finite) set of generators for $\text{Hom}(J_C, J_D)$.

Proof. The Tate conjecture is known for products of curves, so by ([7], Theorem 8.33 and Remark 8.35), one can compute a set of curves E_1, E_2, \ldots, E_n on $C \times D$ whose classes generate $\text{NS}(C \times D)$. Choose closed points $P_0 \in C(k)$ and $Q_0 \in D(k)$ and embeddings $\iota_C: C \to J_C$ and $\iota_D: D \to J_D$ sending P_0 and Q_0 to the respective identity elements. Let π_C and π_D denote the projections from $C \times D$ to C and to D respectively.

We define a homomorphism $\phi: \text{NS}(C \times D) \to \text{Hom}(J_C, J_D)$ as follows. Let $K := k(C)$, and let $\varepsilon \in C(K)$ be the generic point. Let E be an integral curve on $C \times D$. If E is a fiber of π_C, then $\phi(E)$ is the constant map to the identity of J_D. Otherwise, compute the finite K-subscheme $\theta := \pi_D(\pi_C^{-1}(\varepsilon))$ of D. List the K-points $\{Q_1, \ldots, Q_m\}$ of D_K and their multiplicities d_1, \ldots, d_m such that θ is the Weil divisor $d_1Q_1 + \cdots + d_mQ_m$, and then compute

$$Q_E := d_1\iota_D(Q_1) + \cdots + d_m\iota_D(Q_m) \in J_D(K).$$

Lastly, spread out this K-point Q_E: Spec $K \to J_D$ to a k-morphism $\psi_E: C \to J_D$. Then, set $\phi(E)$ to be the unique morphism $J_C \to J_D$ such that $\phi(E)(\iota_C(P)) = \psi_E(P) - \psi_E(P_0)$ for $P \in C(k)$.

This homomorphism ϕ agrees with the projection map $\text{NS}(C \times D) \to \text{Hom}(J_C, J_D)$ in the following factorization described in [14], Section 8.4:

$$\text{NS}(C \times D) \cong \text{NS}(C) \times \text{NS}(D) \times \text{Hom}(J_C, J_D) \cong \mathbb{Z}^2 \times \text{Hom}(J_C, J_D).$$

Hence, ϕ is surjective, so $\phi(E_1), \ldots, \phi(E_n)$ generate $\text{Hom}(J_C, J_D)$. \hfill \square

Lemma 5.2. Let k be an algebraically closed field of characteristic p and $K := k(C)$ for some smooth integral curve C over k. Let Y be an ordinary elliptic curve over K that has either good reduction or multiplicative reduction at every $v \in C$. Let $V: Y^{(p)} \to Y$ be the Verschiebung isogeny, and assume that $\ker V \subset Y^{(p)}(K)$. Then an isomorphism of K-group schemes $\mathbb{Z}/p\mathbb{Z} \to \ker V$ induces a group isomorphism $H^1_b(C, \mathbb{Z}/p\mathbb{Z}) \to \text{Sel}(K, V)$.

Proof. Let $v \in C$ be a place at which Y has good reduction. Thus, there exists a smooth proper model \mathcal{Y} over \mathcal{O}_v, the ring of integers of K_v, whose generic fiber is isomorphic to Y over K_v. By the valuative criterion for properness, $Y(K_v)/V(Y^{(p)}(K_v)) \cong \mathcal{Y}(\mathcal{O}_v)/V(\mathcal{Y}^{(p)}(\mathcal{O}_v))$, and we have

$$\mathcal{Y}(\mathcal{O}_v)/V(\mathcal{Y}^{(p)}(\mathcal{O}_v)) < H^1(\mathcal{O}_v, \mathbb{Z}/p\mathbb{Z}) \cong \mathcal{O}_v/\mathcal{Y}(\mathcal{O}_v),$$

where ϕ is the Artin-Schreier function $\alpha \mapsto \alpha^p - \alpha$. By Hensel’s lemma and the fact that k is algebraically closed, $\phi: \mathcal{O}_v \to \mathcal{O}_v$ is surjective. Thus, $Y(K_v)/V(Y^{(p)}(K_v)) = 0$.

Now, let v be a place at which Y has multiplicative reduction. In this case, we have parameterizations $Y(K_v) \cong K_v^\times/q^\mathbb{Z}$ and $Y^{(p)}(K_v) \cong K_v^\times/q^{p\mathbb{Z}}$, where $q \in K_v^\times$ (REF). Furthermore, V induces the natural projection map $K_v^\times/q^{p\mathbb{Z}} \to K_v^\times/q^\mathbb{Z}$, which is surjective. Thus,
Y(K_v)/V(Y^{(p)}(K_v)) = 0 in this case as well. This shows that

\[\text{Sel}(K, V) \cong \ker \left(H^1(K, \mathbb{Z}/p\mathbb{Z}) \to \prod_{v \in C} H^1(K_v, \mathbb{Z}/p\mathbb{Z}) \right) \cong \ker \left(K/\mathfrak{p}(K) \to \prod_{v \in C} K_v/\mathfrak{p}(K_v) \right). \]

The group on the right hand side of the above expression parameterizes degree \(p \) separable, unramified covers \(C' \to C \), so \(\text{Sel}(K, V) \) is the image of the map \(H^1_{\text{ét}}(C, \mathbb{Z}/p\mathbb{Z}) \to H^1(K, \mathbb{Z}/p\mathbb{Z}) \cong H^1(K, V) \).

Let \(S \) be a scheme and \(A \) be a commutative fppf group scheme over \(S \). If \(A \) is affine over \(S \), then \(H^1_{\text{fppf}}(S, A) \) can be identified with isomorphism classes of \(A \)-torsors over \(S \) (see, for example, REF). Suppose \(f: A \to B \) is a morphism of affine fppf group schemes over \(S \), and let \(f_* \) denote the induced homomorphism \(H^1_{\text{fppf}}(S, A) \to H^1_{\text{fppf}}(S, B) \). Let \(T \) be a \(A \)-torsor over \(S \) also thought of as an element of \(H^1_{\text{fppf}}(S, A) \). Then the \(B \)-torsor corresponding to \(f_*(T) \) is the contracted product \(T \times_A B \), i.e., the quotient of \(T \times_S B \) by the \(A \) action \(a \cdot (t, b) \mapsto (a^{-1} \cdot t, ab) \). There exists a natural \(S \)-morphism \(T \to f_*(T) \) defined by \(t \mapsto (t, 1) \).

Lemma 5.3. Let \(S \) be a scheme and

\[
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
\]

be a short exact sequence of affine commutative group schemes over \(S \). We then have the exact sequence

\[
H^1_{\text{fppf}}(S, A) \xrightarrow{f_*} H^1_{\text{fppf}}(S, B) \xrightarrow{g_*} H^1_{\text{fppf}}(S, C)
\]

Let \(T \) be a \(B \)-torsor over \(S \) such that \(g_*(T) \) is the trivial \(C \)-torsor. Let \(\sigma: S \to g_*(T) \) be any section, and consider the Cartesian square

\[
\begin{array}{ccc}
T_\sigma & \longrightarrow & S \\
\downarrow \sigma' & & \downarrow \sigma \\
T & \longrightarrow & g_*(T)
\end{array}
\]

Then \(T_\sigma \) is an \(A \)-torsor over \(S \) such that \(f_*(T_\sigma) = T \).

Proof. One can check that the \(S \)-morphism \(\mu: A \times_S T_\sigma \to T \) defined by \((a, t) \mapsto a \cdot \sigma'(t) \) lifts to a morphism \(A \times_S T_\sigma \to T_\sigma \) and that this defines an \(A \)-action on \(T_\sigma \). There is a well defined \(S \)-morphism

\[\phi: T_\sigma \times B \to T, \quad (t, b) \mapsto b \cdot \sigma'(t), \]

which has the property that

\[\phi(t, b'b) = b'b \cdot \sigma'(t) = b' \cdot \phi(t, b). \]
So, if we can verify that T_σ is an A-torsor, then ϕ must be an isomorphism of B-torsors. For this, replace S by some fppf cover S' of S to assume T_σ has an S-point. This means T has an S-point as well, which forces T to be the trivial torsor, so we can assume T is B, $g_*(T)$ is C, and σ is the identity section. This then means T_σ is the kernel of g, which is A.

For the following lemma, we introduce some background on the Hasse-Witt matrix and the Cartier operator; see [9], Sections 8-10, for more details. Let k be an algebraically closed field of characteristic p, and let C be a smooth connected projective curve over k with function field $K := k(C)$. Let \mathcal{R} denote the ring of repartitions on C, i.e., the elements $r = (r_P) \in \prod_{P \in C(k)} K$ such that r_P is regular at P for all but finitely many $P \in C(k)$. Let $\mathcal{R}(0)$ denote the subring of repartitions such that r_P is regular at all $P \in C(k)$. There is an isomorphism
\[
\phi: \frac{\mathcal{R}}{\mathcal{R}(0) + K} \to H^1(C, \mathcal{O}_C)
\]
that goes as follows. Let $r \bmod \mathcal{R}(0) + K$ be an element of the group on the left hand side. We can assume that $r_P \neq 0$ only for P in some finite set of points $\{P_1, \ldots, P_n\}$. For $1 \leq i \leq n$, let U_i be the open subset of C containing P_i and all points other than P_1, \ldots, P_n at which r_{P_i} is regular, and let $U_{n+1} := C \setminus \{P_1, \ldots, P_n\}$. Then $\phi(r)$ is the Čech 1-cocycle for the open cover U_1, \ldots, U_{n+1} of C whose value on $U_i \cap U_j$ for $1 \leq i < j \leq n + 1$ is
\[
f_{ij} := \begin{cases} r_{P_i} - r_{P_j} & \text{if } 1 \leq i, j \leq n, \\ r_{P_i} & \text{if } j = n + 1. \end{cases}
\]
Let F denote the Frobenius operator on \mathcal{R} sending r to (r^p_P). If F_* is the operator on $H^1(C, \mathcal{O}_C)$ induced by the pth power Frobenius map on \mathcal{O}_C, then ϕ satisfies $\phi(F(r)) = F_*(\phi(r))$.

Let t be an element of $K \setminus K^p$. Then any $s \in K$ can be written as
\[
s = s_0^p + s_1^p t + \cdots + s_{p-1}^p t^{p-1}.
\]
The Cartier operator \mathcal{C} is defined on differential forms on C by $\mathcal{C}(s \, dt) := s_{p-1} \, dt$. Serre duality is explicitly described by the pairing
\[
\langle \cdot, \cdot \rangle: \frac{\mathcal{R}}{\mathcal{R}(0) + K} \times H^0(C, \Omega_C) \to k, \quad \langle r, \omega \rangle = \sum_{P \in C(k)} \text{res}_P(r_P \omega).
\]
The Frobenius operator on $\mathcal{R}/(\mathcal{R}(0) + K)$ and the Cartier operator on $H^0(C, \Omega_C)$ are related by the following formula:
\[
\langle F(r), \omega \rangle = \langle r, \mathcal{C}(\omega) \rangle^p.
\]
If r_1, \ldots, r_g is a basis for $\mathcal{R}/(\mathcal{R}(0) + K)$, then the Hasse-Witt matrix with respect to this basis is a g-by-g matrix (a_{ij}) such that $F(r_i) = \sum_j a_{ij} r_j$. Suppose P_1, \ldots, P_g are g distinct points on C such that the divisor $D := P_1 + \cdots + P_g$ is non-special, i.e., $\dim H^0(C, \Omega_C(D)) = 1$.

Campbell Hewett
If \(u_1, \ldots, u_g \) are respective uniformizers for \(P_1, \ldots, P_g \), then the repartitions \(r_1, \ldots, r_g \) defined by

\[
(r_i)_P := \begin{cases}
0 & \text{if } P \neq P_i \\
1/u_i & \text{if } P = P_i
\end{cases}
\]

form a basis for \(R/(R(0) + K) \).

Lemma 5.4. There exists an algorithm that takes in (i)-(iii) of Input 3.14 and computes coset representatives for the image of \(H^1_{\text{ét}}(C, \mathbb{Z}/p\mathbb{Z}) \) in \(K/\wp(K) \).

Proof. Consider the Artin-Schreier short exact sequence on the étale site of \(C \):

\[
\begin{array}{cccccccccc}
0 & \longrightarrow & \mathbb{Z}/p\mathbb{Z} & \longrightarrow & \mathbb{G}_a & \xrightarrow{\wp} & \mathbb{G}_a & \longrightarrow & 0 \\
\end{array}
\]

The map \(\wp : k \rightarrow k \) is surjective, so we have the exact sequence

\[
\begin{array}{cccccccccc}
0 & \longrightarrow & H^1_{\text{ét}}(C, \mathbb{Z}/p\mathbb{Z}) & \longrightarrow & H^1_{\text{ét}}(C, \mathbb{G}_a) & \xrightarrow{\wp_*} & H^1_{\text{ét}}(C, \mathbb{G}_a) & \longrightarrow & 0
\end{array}
\]

Furthermore, we have the canonical isomorphism \(H^1(C, \mathcal{O}_C) \cong H^1_{\text{ét}}(C, \mathbb{G}_a) \). The first step is to find a basis \(r_1, \ldots, r_g \) for \(H^1(C, \mathcal{O}_C) \) and compute the Hasse-Witt matrix with respect to this basis. One way to do this is as follows.

Compute a basis \(\omega_1, \ldots, \omega_g \) for \(H^0(C, \Omega_C) \) and a matrix \((c_{ij})\) for the Cartier operator with respect to this basis as outlined in [12]. Now choose points \(P_1, \ldots, P_g \) inductively as follows. For each \(1 \leq j \leq g \), set \(\omega_{0,j} := \omega_j \). For each \(i \geq 1 \), choose a point \(P_i \) on which \(\omega_{i-1,1} \) does not vanish and compute a basis \(\omega_{i,1}, \ldots, \omega_{i,g-i} \) for \(H^0(C, \Omega_C(P_1 + \cdots + P_i)) \). By construction, \(P_1 + \cdots + P_g \) is a nonspecial divisor. Compute respective uniformizers \(u_1, \ldots, u_g \) for these points to get a basis \(r_1, \ldots, r_g \) for \(R/(R(0) + K) \) as described above. Using (5.1) and the matrix \((c_{ij})\), compute the Hasse-Witt matrix \(H := (a_{ij}) \) with respect to \(r_1, \ldots, r_g \).

The choice of basis \(r_1, \ldots, r_g \) lets us represent elements of \(R/(R(0) + K) \) by column vectors. For such a vector \((\beta_i)\), the Artin-Schreier operator is given by

\[
(\beta_i) \mapsto H(\beta_i^p) - (\beta_i).
\]

Computing its kernel is just a matter of finding the finitely many solutions of \(g \) polynomials in the variables \(\beta_1, \ldots, \beta_g \). Thus, compute the kernel \(\{s_1, s_2, \ldots, s_N\} \subset R/(R(0) + K) \) and lift each \(s_\ell \) to some \(s_\ell \in R \). To get from \(s_\ell \) to an element of \(K \), first determine the Čech 1-cocycle \(\phi(s_\ell) \) as described above, with cover \(U_1, \ldots, U_{n+1} \) and values \(f_{ij} \) on \(U_i \cap U_j \). Let \(T_\ell \) be the \(\mathbb{G}_a \)-torsor corresponding to \(s_\ell \). Above \(U_1, T_\ell \) and \(\wp_* (T_\ell) \) are both isomorphic to \(U_1 \times_k \mathbb{A}^1_k \), and the morphism \(T_\ell \rightarrow \wp_* (T_\ell) \) is given by \((P, x) \mapsto (P, x^p - x)\). Determine elements \(g_\ell \in \mathcal{O}_C(U_1) \) and \(h_\ell \in \mathcal{O}_C(U_2) \) such that \(f_{12}^\ell - f_{12} = h_\ell - g_\ell \). There is a section \(\sigma : C \rightarrow \wp_* (T_\ell) \) given on \(U_1 \) by \(P \mapsto (P, g_\ell(P)) \). Thus, by Lemma 5.3, a \(\mathbb{Z}/p\mathbb{Z} \)-torsor \(T_\gamma \) corresponding to \(s_\ell \) restricted to \(U_1 \) has equation \(x^p - x = g_\ell \). Thus, the desired elements of \(K \) are \(g_1, \ldots, g_N \). \(\square \)
Lemma 5.5. Assume the same hypotheses as in Lemma 5.2. Let S be a finite set of $v \in C$ containing all places with bad reduction, and let $O_{K,S}$ be the ring of S-integers in K. Then a K-group scheme isomorphism $\mu_p \to \ker F$ induces an inclusion

$$Y^{(p)}(K)/F(Y(K)) \subset H^1_{fppf}(O_{K,S}, \mu_p) \subset H^1_{fppf}(K, \mu_p),$$

and $H^1_{fppf}(O_{K,S}, \mu_p)$ maps isomorphically to $K(S,p)$ (see Lemma 4.1 and Remark 4.2) via the isomorphism $H^1_{fppf}(K, \mu_p) \cong K^\times/K^{\times p}$.

Proof. Let \mathcal{Y} be a proper, smooth scheme over $O_{K,S}$ whose generic fiber is isomorphic to Y over K. By properness,

$$Y^{(p)}(K)/F(Y(K)) \cong \mathcal{Y}^{(p)}(O_{K,S})/F(\mathcal{Y}(O_{K,S})) \subset H^1_{fppf}(O_{K,S}, \ker F) \cong H^1_{fppf}(O_{K,S}, \mu_p).$$

If $v \in C$ is a closed point, then we have an exact sequence

$$0 \to O_{C,v}^\times/O_{C,v}^{\times p} \to H^1_{fppf}(O_{C,v}, \mu_p) \to H^1_{fppf}(O_{C,v}, \mathbb{G}_m).$$

But, $H^1_{fppf}(O_{C,v}, \mathbb{G}_m) \cong \text{Pic } O_{C,v} \cong 0$. This shows that every μ_p-torsor over $O_{C,v}$ is of the form

$$\text{Spec } O_{C,v}[x]/(x^p - \alpha)$$

for some $\alpha \in O_{C,v}^\times$ defined uniquely modulo $O_{C,v}^{\times p}$.

Now, take any element $\xi \in H^1_{fppf}(O_{K,S}, \mu_p)$ and consider its corresponding μ_p-torsor T over $O_{K,S}$. By the above paragraph, there exists an open cover \mathcal{U} of $C \setminus S$ and elements $\alpha_U \in O_{C(U)}^\times$ for $U \in \mathcal{U}$ such that

$$T_U \cong \text{Spec } O_{C(U)}[x]/(x^p - \alpha_U).$$

If $U, V \in \mathcal{U}$ and $v \in U \cap V$, then $\alpha_U/\alpha_V \in O_{C,v}^{\times p}$, so in particular, $\alpha_U/\alpha_V \in K^{\times p}$. Therefore, there is a well defined homomorphism $\phi: H^1_{fppf}(O_{K,S}, \mu_p) \to K(S,p)$ defined by $\xi \mapsto \overline{\alpha}^\mu_U$, where U is any element of \mathcal{U}. Note that we also have a commutative diagram

$$\begin{array}{ccc}
H^1_{fppf}(O_{K,S}, \mu_p) & \longrightarrow & H^1_{fppf}(K, \mu_p) \\
\phi \downarrow & & \cong \\
K(S,p) & \longrightarrow & K^\times/K^{\times p}
\end{array}$$

On the other hand, take any $\overline{\alpha} \in K(S,p)$ with coset representative $\alpha \in K^\times$. For any $v \in C \setminus S$, we have $v(\alpha) = 0 \pmod{p}$, so $\alpha^\beta \in O_{C,v}^\times$ for some $\beta \in K^\times$. This means there exists an open cover \mathcal{U} of $C \setminus S$ and elements $\alpha_U \in O_{C(U)}^\times$ such that $\alpha_U = \alpha \pmod{K^{\times p}}$ for all $U \in \mathcal{U}$. Define

$$T_U := \text{Spec } O_{C(U)}[x]/(x^p - \alpha_U)$$

for each $U \in \mathcal{U}$. For $U, V \in \mathcal{U}$, we have $\alpha_U/\alpha_V \in K^{\times p} \cap O_{C(U \cap V)}^\times = O_{C(U \cap V)}^{\times p}$, so there are $O_{C(U \cap V)}$-isomorphisms

$$\text{Spec } O_{C(U \cap V)}[x]/(x^p - \alpha_V) \to \text{Spec } O_{C(U \cap V)}[x]/(x^p - \alpha_U)$$
Proof of Theorem 1.1, assuming \(\tilde{g} = 1 \). Assume Input 3.14. We will invoke Remark 3.5 multiple times and replace \(K_0 \) by finite separable extensions. First, replace \(K_0 \) by such an extension to assume that \(Y \) has a \(K_0 \)-point, making \(Y_{K_0} \) into an elliptic curve as in the proof of Proposition 3.15. Next, use Proposition 3.15 to determine if \(Y \) is isotrivial. First, consider the case where \(Y \) is isotrivial. Replace \(k_0 \) by \(\ell_0, \ K_0 \) by \(L_0 \), and \(Y \) by \(\overline{Y}_{k_0} \) via the isomorphism \(\phi \) as in the statement of the proposition. Thus, we have

\[
Y_0(K)/Y_0(k) = \{ \text{k-morphisms Spec } K \rightarrow Y_0 \}/Y_0(k)
\]

\[
= \{ \text{k-morphisms } C \rightarrow Y_0 \}/\{ \text{constant k-morphisms } C \rightarrow Y_0 \}
\]

\[
= \text{Hom}(J_C, Y_0).
\]

Using Proposition 5.1, compute a set of generators for \(Y_0(K)/Y_0(k) \), and then compute the finite group

\[
\frac{Y_0(K)/Y_0(k)}{p(Y_0(K)/Y_0(k))} = \frac{Y_0(K)}{pY_0(K)}
\]

(note that in the proof of Proposition 5.1, we first construct the k-morphisms \(C \rightarrow Y_0 \) themselves, which are all we need in this case). We now have points \(Q_1, \ldots, Q_n \in Y_0(K) \) such that all elements of \(Y_0(K) \) are of the form \(Q_i + pP \) for \(P \in Y_0(K) \) for some \(i \). Apply Proposition 3.8 with \(Z = Y \) and \(f(P) = Q_i + pP \) for every \(i \) to compute \(X(K) \).

Now, consider the case where \(Y \) is nonisotrivial (in fact, the proof in this case only assumes \(Y \) is ordinary). Replace \(K_0 \) by a finite separable extension such that \(\ker V \subset Y^{(p)}(K_0) \), \(\ker F \subset Y(K_0) \), and \(Y \) has either good reduction or multiplicative reduction at every \(v \in C \). Compute a \(K_0 \)-group scheme isomorphism \(\mathbb{Z}/p\mathbb{Z} \rightarrow \ker V \) as well as the image of \(H^1_{\text{fppf}}(C, \mathbb{Z}/p\mathbb{Z}) \) in \(K/\varphi(K) \) as in Lemma 5.4. By Lemma 5.2, this is the same as \(\text{Sel}(K, V) \) as a subgroup of \(H^1(K, \ker V) \). For every \(\eta \in \text{Sel}(K, V) \), compute a corresponding \(\ker V \)-torsor \(V_\eta : Y_\eta \rightarrow Y \). Now, every \(P \in Y(K) \) is of the form \(V_\eta(Q) \) for some \(\eta \in \text{Sel}(K_0, V) \) and \(Q \in Y_\eta(K) \).

Let \(X_\eta := X \times_Y Y_\eta \) with morphism \(g_\eta : X_\eta \rightarrow X \). Note that \(V_\eta \) is separable and \(\pi \) is purely inseparable, so \(\overline{Y}(Y_\eta) \) and \(\overline{X}(X) \) are linearly disjoint over \(\overline{K}(Y) \). This implies \(X_\eta \) is geometrically integral. Furthermore, \(X \) is regular and \(g_\eta \) is étale because \(V_\eta \) is étale, so \(X_\eta \) is regular. On the other hand, \(X_\eta \) maps to \(X \), so \(X_\eta \) cannot be smooth ([11], Lemma 0CCW). Now, because

\[
\bigcup_{\eta \in \text{Sel}(K, V)} g_\eta(X_\eta(K)) = \bigcup_{\eta \in \text{Sel}(K, V)} g_\eta\left(\{(P, Q) \in X \times Y_\eta(K) \mid \pi(P) = V_\eta(Q)\} \right)
\]

\[
= \bigcup_{\eta \in \text{Sel}(K, V)} \{ P \in X(K) \mid \pi(P) = V_\eta(Q) \text{ for some } Q \in Y_\eta(K) \}
\]

\[
= X(K),
\]
it suffices to compute $X_\eta(K)$ for each $\eta \in \text{Sel}(K,V)$. Note that Y_η is a twist of $Y^{(p)}$, which can be defined over K_0^p. It follows that Y_η can be defined over K_0^p, so $Y_\eta^{(1/p)}$ is defined over K_0. For simplicity, we may replace X and Y by X_η and Y_η.

Now, using Lemma 5.5 and Remark 4.2, compute a finite subgroup $H := H^1_{fppf}(\mathcal{O}_{K,S}, \mu_p) \subset H^1_{fppf}(K, \mu_p) \cong K^*/K^{*p}$ isomorphic to $K(S,p)$ for some finite set of places S of K such that H contains the image of $Y(K)$. Therefore, every $h \in H$ gives a ker-F-torsor $F_h : Y_h \to Y$ such that every $P \in Y(K)$ is of the form $F_h(Q)$ for some $h \in H$ and $Q \in Y_h(K)$. The morphism F_h is inseparable, so apply Proposition 3.8 with $Z = Y_h$ and $f = F_h$ for every h to compute $X(K)$.

\[\square \]

\section{Curves of absolute genus at least two}

In the case where Y_K is isotrivial, we make use of the de Franchis-Severi Theorem. The proof of a computable version of the de Franchis-Severi Theorem over a number field or \mathbb{Q} was given in [2], Theorem 5.5. We show that it can be slightly modified to work over any field k_0 finitely generated over its prime field.

\textbf{Theorem 6.1.} There exists an algorithm that takes as input a field k_0 finitely generated over its prime field, with $k := \overline{k_0}$, and a smooth projective integral curve and computes the set of pairs (Y, π) where Y is a smooth curve over k with $g(Y) \geq 2$ and $\pi : X \to Y$ is a separable morphism, up to isomorphism (pairs (Y, π) and (Y', π') are considered isomorphic if and only if there is a k-isomorphism $\theta : Y \to Y'$ with $\theta \circ \pi = \pi'$).

\textbf{Proof.} Because $2 \leq g(Y) \leq g(X)$, it suffices to show that, for fixed $g \geq 2$, the set \mathcal{C}_g of isomorphism classes of (Y, π) with $g(Y) = g$ is computable. Embed X in \mathbb{P}^n_k via the tricanonical embedding. Let $(Y, \pi) \in \mathcal{C}_g$, and embed Y in \mathbb{P}^n_k via the tricanonical embedding. Then, if R is the ramification divisor of π, then $3K_X - \pi^*(3K_Y)$ is linearly equivalent to $3R$, which is an effective divisor. Thus, $H^0(X, \pi^*(3K_Y)) = H^0(X, 3K_X - 3R) \subset H^0(X, 3K_X)$, so π is the restriction to X of a projection $\pi_L : \mathbb{P}^n_k \dashrightarrow \mathbb{P}_k^{n}$ with respect to a linear subspace $L \subset \mathbb{P}_k^n$ of dimension $n-m-1$. Let G be the Grassmannian variety of $(n-m-1)$-dimensional subspaces of \mathbb{P}^n_k. If θ is an isomorphism from (Y, π) to (Y', π'), then $\pi^*(3K_Y) = 3\pi^*(\theta^*K_{Y'}) = \pi'^*(3K_{Y'})$. Thus, $(Y, \pi) \mapsto L$ is a well defined function $\iota : \mathcal{C}_g \to G(k)$. If $\iota(Y, \pi) = \iota(Y', \pi')$, then Y and Y' map isomorphically to the same curve in \mathbb{P}^m_k such that π and π' are induced by the same projection. Hence, ι is injective.

Conversely, if $s \in G_k$ with residue field $k(s)$, then let L be the corresponding subspace of $\mathbb{P}^n_{k(s)}$, let Y_s be the Zariski closure of $\pi_L(X_{k(s)} - L)$ in $\mathbb{P}^m_{k(s)}$, and let $\pi_s : X_{k(s)} \to Y_s$ denote the morphism induced by π_L. The $s \in G(k)$ that are in the image of ι are precisely the points that satisfy the following three conditions:

(i) Y_s is a smooth curve over k,
(ii) π_s is a separable morphism, and
(iii) the subspace $L \subset \mathbb{P}^m_k$ is equal to the linear subspace $L' \subset \mathbb{P}^n_k$ defined as the common zeros of the sections in the image of $H^0(Y_s, 3K_{Y_s}) \to H^0(X, 3K_X)$.
[2] first prove the following claim:

Claim 1. \(G \) can be computably partitioned into a finite number of irreducible locally closed subsets \(H_i \) such that for each \(i \), either

1. for all \(s \in H_i \), the curve \(Y_s \) is not smooth over the residue field of \(s \), or
2. there is a smooth family \(\mathcal{Y} \to H_i \) of curves, and an \(H_i \)-morphism \(X \times_k H_i \to \mathcal{Y} \) whose fiber above \(s \in H_i \) is \(\pi_s : X \to Y_s \).

Assuming this, we prove the following claim:

Claim 2. Let \(H \) be a locally closed subset of \(G \) satisfying (2) in Claim 1. Then, \(H \) can be computably partitioned into a finite number of irreducible locally closed subsets \(H'_i \) such that for all \(i \), either (1) \(\pi_s \) is inseparable for all \(s \in H'_i \) or (2) \(\pi_s \) is separable for all \(s \in H'_i \).

To prove this claim, we use induction on the dimension of \(H \). First, compute the irreducible components of \(H \) to reduce to the case where \(H \) is irreducible. The claim is clearly true if \(\dim H = 0 \). Suppose \(\dim H \geq 1 \), and let \(\eta \in H \) be the generic point of \(H \). By assumption, \(Y_\eta \) is smooth over \(\kappa := k(\eta) \), so in particular, it is geometrically reduced. Thus, there exists some \(f \in \kappa(Y_\eta) \) such that \(\kappa(Y_\eta) \) is a separable finite extension of \(\kappa(f) \). But, \(\kappa(Y_\eta) \) is the function field of \(\mathcal{Y} \), so we may compute a nonempty open subset \(V \subset \mathcal{Y} \) on which \(f \) is a well defined \(k \)-morphism \(V \to \mathbb{A}^1_k \). Let \(U \subset H \) be the image of \(V \) under \(\mathcal{Y} \to H \). Then, \(f \) is a well defined element of \(k(s)(Y_s) \) for all \(s \in U \). Now, \(df \neq 0 \in \Omega_{k(s)} \) because \(\kappa(Y_\eta) \) is separable over \(\kappa(f) \), so we may replace \(U \) by a smaller nonempty open set to assume \(df \neq 0 \in \Omega_{k(s)(Y_s)} \) for all \(s \in U \). If \(d(\pi_s^*f) = 0 \in \Omega_{k(s)}(X_s) \), then \(d(\pi_s^*f) = 0 \in \Omega_{k(s)}(X_{k(s)}) \) for all \(s \in U \), meaning \(\pi_s \) is inseparable for all \(s \in U \). If \(d(\pi_s^*f) \neq 0 \in \Omega_{k(s)}(X_s) \), we may again replace \(U \) by a smaller nonempty open set such that \(d(\pi_s^*f) \neq 0 \in \Omega_{k(s)}(X_{k(s)}) \) for all \(s \in U \), meaning \(\pi_s \) is separable for all \(s \in U \). The irreducible components of \(H \setminus U \) have smaller dimension than \(H \), so, by induction, we have proved Claim 2.

[2] then prove the following (because they work over \(\overline{\mathbb{Q}} \), there is no mention of separability of \(\pi_s \), but the proof of the claim stated here is exactly the same):

Claim 3. Let \(H \) be a locally closed subset of \(G \) satisfying (2) in Claim 1 and (2) in Claim 2. Let \(J \) be the set of \(s \in H \) for which the linear subspace \(L \subset \mathbb{P}^{\alpha}_{k(s)} \) is equal to the linear subspace \(L' \subset \mathbb{P}^{\alpha}_{k(s)} \) defined as the common zeros of the sections in the image \(H^0(Y_s, 3K_{Y_s}) \to H^0(X_{k(s)}, 3K_{X_{k(s)}}) \). Then, \(J \) is constructible and computable.

Claims 1, 2, and 3 together tell us that the set of \(s \in G(k) \) satisfying (i), (ii), and (iii) above are the closed points of a computable subvariety \(J \) of \(G \). By the de Franchis-Severi Theorem, there are finitely many such \(s \), so \(\dim J = 0 \). Thus, its set of points is computable and therefore \(C_g \) is as well.

\[\blacksquare \]

Remark 6.2. If we are given smooth curves \(X \) and \(Y \) over \(k \) with \(g(Y) \geq 2 \), then for there to exist a separable morphism \(X \to Y \), we must have \(g(X) \geq g(Y) \geq 2 \). Thus, computing the finite set of separable morphisms \((Y', \pi') \) described by the theorem and determining which \(Y' \) are isomorphic to \(Y \) shows that the set of separable morphisms from \(X \) is to \(Y \) is finite and computable.

As in the case \(\tilde{g} = 1 \), we break the proof of 1.1 into the cases where \(Y_K \) is isotrivial and \(Y_K \) is nonisotrivial. Which case we are in can be detected using Proposition 3.15.
Proof of Theorem 1.1, assuming \(\tilde{g} \geq 2 \) and \(Y_0 \) is isotrivial. Assume Input 3.14. Using Proposition 3.15 and Remark 3.5, replace \(k_0 \) by \(\ell_0 \), \(K_0 \) by \(L_0 \), and \(Y \) by \((Y_0)_{K_0} \) via the isomorphism \(\phi \). Thus,

\[
Y_0(K) = \{ \text{morphisms } \text{Spec } K \to Y_0 \} = \{ k\text{-morphisms } C \to Y_0 \} = Y_0(k) \cup \{ \text{nonconstant } k\text{-morphisms } C \to Y_0 \}.
\]

Using Theorem 6.1, compute the finitely many separable \(k \)-morphisms \(g_1, \ldots, g_n : C \to Y_0 \), and let \(Q_1, \ldots, Q_n \) denote the corresponding elements of \(Y_0(K) \). Choose \(z \) and \(r \) as in Proposition 3.4 so that \(r \) is defined on all of the \(Q_i \). We claim that a point \(P \in Y_0(K) \) falls into one of the following cases:

(i) \(P = Q_i \) for some \(i \), or

(ii) \(P = F(Q) \) for some \(Q \in Y_0^{(1/p)}(K) \).

To see this, suppose \(P \in Y_0(K) \). If \(P \in Y_0(k) \), then because \(k \) is algebraically closed, \(P \) satisfies (ii). Now, assume \(P \notin Y_0(k) \) and \(P \) does not satisfy (i). Then, \(P \) can be identified with a nonconstant inseparable \(k \)-morphism \(f : C \to Y_0 \). Because \(C \) is smooth, this implies \(f \) factors as \(g \circ F \) for some \(k \)-morphism \(g : C^{(p)} \to Y_0 \). Taking the \(p \)th root of all coefficients in \(g \) gives us a \(k \)-morphism \(g^{(1/p)} : C \to Y_0^{(1/p)} \), corresponding to a point \(Q \in Y_0^{(1/p)}(K) \). Furthermore,

\[
f = g \circ F = F \circ g^{(1/p)},
\]

meaning \(P = F(Q) \).

The set of \(P \) satisfying (i) is finite, so determine which ones satisfy \(r(P) \in K^p \). Lastly, compute the set of \(P \) satisfying (ii) such that \(r(P) \in K^p \) using Proposition 3.8, taking \(Z = (Y_0^{(1/p)})_K \) and \(f = F \).

Let \(k \) be a field, \(Y \) be a smooth connected projective surface over \(k \), and \(C \) be a smooth connected projective curve over \(k \) together with a morphism \(\phi : Y \to C \). Then we say \(\phi \) is semistable if

(i) the generic fiber of \(\phi \) is a smooth geometrically connected projective curve over \(K \),

(ii) the geometric fibers of \(\phi \) are reduced with at worst normal crossing singularities, and

(iii) the fibers of \(\phi \) contain no \((-1)\)-curves.

Theorem 6.3. Let \(k \) be a field of characteristic \(p \) and \(K = k(C) \), where \(C \) is a smooth integral curve over \(k \). Let \(Y \) be a smooth connected projective curve over \(K \) with genus \(g(Y) \geq 2 \). Let \(\ell > 768g(Y) \) be a prime not equal to \(p \), and assume \(Y(K) \neq \emptyset \) and \(\text{Pic } Y[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^{\oplus 2g(Y)} \). Let \(\phi : Y \to C \) be a minimal regular model for \(Y \). Then \(\phi \) is semistable.

Proof. See [11], Theorem 0CDN. \(\square \)
Let Y and $\phi: Y \to C$ be as in Theorem 6.3. There is an induced morphism $\alpha: C \to \overline{M}_g$, where \overline{M}_g is the coarse moduli space of stable curves of genus g over k. The image of α will be a projective curve over k if Y is nonisotrivial. In this case, the inseparable degree of α is equal to p^e for some integer $e \geq 0$, which Szpiro ([13]) defines as the modular inseparability exponent of ϕ. Note that we have a commutative diagram

$$
\begin{array}{ccc}
\text{Spec } K & \longrightarrow & \text{Spec } F \\
\downarrow & & \downarrow \\
C & \longrightarrow & \overline{M}_g
\end{array}
$$

(6.1)

where F is the residue field of the image of Spec K and has transcendence degree one over k, and p^e is the inseparable degree of K/F. This means that e depends only on Y, so we will also refer to e as the modular inseparability exponent of Y.

Let $B \subset C$ be an open subset with $Z := \phi^{-1}(B)$ such that $Z \to B$ is smooth. Consider the exact sequence of tangent sheaves on Z:

$$0 \to \mathcal{T}_{\mathcal{Z}/B} \to \mathcal{T}_{\mathcal{Z}} \to \phi^*\mathcal{T}_B \to 0.$$

The natural homomorphism $\mathcal{T}_B \to \phi_*\phi^*\mathcal{T}_B$ is an isomorphism, so we have an exact sequence

$$0 \to \phi_*\mathcal{T}_{\mathcal{Z}/B} \to \phi_*\mathcal{T}_{\mathcal{Z}} \xrightarrow{\beta} \mathcal{T}_B \xrightarrow{\gamma} R^1\phi_*\mathcal{T}_{\mathcal{Z}/B}.$$

(6.2)

Then $e > 0$ if and only if the Kodaira-Spencer map γ is zero.

Proposition 6.4. Let $\phi: Y \to C$ be semistable with modular inseparability exponent e. Let Y be the generic fiber of \mathcal{Y}, and suppose Y has genus at least two. Then $e > 0$ if and only if there exists a curve Y' over kK^p such that $Y \simeq Y'_K$. If this is the case, then the modular inseparability exponent of Y' is $e - 1$.

Proof. Let $\varepsilon \in C$ be the generic point. Taking stalks of (6.2) at ε, we get

$$0 \longrightarrow H^0(Y, \mathcal{T}_Y) \longrightarrow (\phi_*\mathcal{T}_{\mathcal{Z}})_\varepsilon \xrightarrow{\beta_\varepsilon} \mathcal{T}_{B, \varepsilon} \xrightarrow{\gamma_\varepsilon} H^1(Y, \mathcal{T}_Y).$$

Here, $\mathcal{T}_{B, \varepsilon}$ is a one-dimensional K-vector space and can be identified with the set of k-derivations on K. Then $e > 0$ if and only if $\gamma_\varepsilon = 0$ if and only if β_ε is an isomorphism. Let δ be a nonzero k-derivation on K. We therefore see that $e > 0$ if and only if δ extends to a derivation on $\mathcal{O}_Y|_{\phi^{-1}(U)}$ for some open $U \subset B$ if and only if δ extends to a k-derivation on \mathcal{O}_Y. By Proposition 3.16, this is satisfied if and only if there exists a curve Y' over kK^p such that $Y \simeq Y'_K$.

With the notation in (6.1), the map Spec $K \to \overline{M}_g$ factors as

$$\text{Spec } K \to \text{Spec } kK^p \to \text{Spec } F \to \overline{M}_g.$$
Then the modular inseparability exponent of Y' is

$$[kK^p : F]_i = \frac{[K : F]_i}{[kK^p : F]_i} = p^{e-1}.$$

\[\square\]

Proposition 6.5. There exists an algorithm that takes in (i)-(iii) of Input 3.14 and a smooth curve Y over K_0 of genus at least two and either computes a curve Y' over $k_0K_0^p$ such that $Y \cong Y'_k$ or determines if no such Y' exists.

Proof. First determine an affine open subset $B = \text{Spec} A$ of C such that Y spreads out to a smooth projective k_0-morphism $\phi : Y \to B$. Let ε denote the generic point of C. Let R be the homogeneous coordinate ring of Y as a projective B-scheme, and compute an R-module M such that $T_Y = \bar{M}$. Then compute $N := M \otimes_A K_0$, which is a module over the homogeneous coordinate ring of Y, as well as $H := H^0(Y, N)$. We have natural isomorphisms

$$H \cong H^0(Y, T_Y|_Y) \cong H^0(Y, T_Y) \otimes_A K_0 \cong H^0(B, \phi_* T_Y) \otimes_A K_0 \cong (\phi_* T_Y)_\varepsilon.$$

By the proof of Corollary 3.7, Y' exists if and only if $H \neq 0$. So, if $H = 0$, then the algorithm stops here. Otherwise, choose any nonzero $\tilde{\delta} \in H$ thought of as a k_0-derivation on O_Y. Let δ be its image in $H^0(B, T_B)$. By Proposition 3.16, the kernel of δ is the structure sheaf of the desired Y'. From δ, determine the induced k-derivation $\tilde{\delta}_\eta$ on $K_0(Y)$. Consider $\tilde{\delta}_\eta$ as a $k_0K_0(Y)^p$-linear operator on the p^2-dimensional $k_0K_0(Y)^p$-vector space $K_0(Y)$, and compute its kernel F. Compute a presentation $F = k_0K_0^p[x_1, \ldots, x_n]/(f_1, \ldots, f_m)$. In this way, F is the function field of an affine curve Z over $k_0K_0^p$. The normalization of the projective closure of Z is isomorphic to Y' over $k_0K_0^p$, so compute this to finish the proof. \[\square\]

Theorem 6.6. Let $\phi : Y \to C$ be semistable. Let Y be the generic fiber of Y, and suppose Y has genus at least two. Let $s : C \to Y$ be a section of ϕ with $E := s(C)$. Then

$$-E.E \leq p^e \frac{8}{3} \left[\frac{3g(Y) + 2}{3g(Y)} \right]^2 \left(f + 1 + \frac{2g(C) - 2}{3g(Y)} + \frac{1}{3g(Y)} \right),$$

where f is the number of nonsmooth fibers of ϕ and e is the modular inseparability exponent of ϕ.

Proof. See [13], Corollaire 2. \[\square\]

Remark 6.7. Given (i)-(iii) of Input 3.14 and a semistable morphism $\phi : Y \to C$ over k_0 as in Theorem 6.6, one can compute the number on the right hand side of (6.3). To compute e, repeatedly apply Proposition 6.5 and Proposition 6.4. There will be a curve Y' over $k_0K_0^p$ such that $Y \cong Y'_k$, but there will not exist such a curve over $k_0K_0^{p+1}$.

Theorem 6.8. Let k, K, and $\phi : Y \to C$ be as in Theorem 6.3. The relative dualizing sheaf $\omega_{Y/C} = K_Y - \phi^* K_C$ satisfies

(i) $\omega_{Y/C} \cdot \omega_{Y/C} \geq 0$, with equality if and only if Y is isotrivial, and
(ii) $\omega_{Y/C}.D \geq 0$ for all effective divisors D on Y, with equality if and only if D is supported on the rational curves of self-intersection -2 contained in the fibers of ϕ.

In particular, if Y is nonisotrivial, $\omega_{Y/C}$ is big.

Proof. See [13], Théorème 1 and Théorème 2. Bigness of $\omega_{Y/C}$ follows from [6], Theorem 2.2.16. \hfill \Box

Theorem 6.9. Let k be an algebraically closed field of characteristic p and $K = k(C)$, where C is a smooth integral curve over k. If Y is a smooth nonisotrivial curve over K with $g(Y) \geq 2$, then the set $Y(K)$ is finite.

Proof. See [8], Théorème 4. \hfill \Box

Theorem 6.10. There exists an algorithm that takes in (i)-(iii) of Input 3.14 and a smooth connected projective nonisotrivial curve Y over K_0 with genus $g(Y) \geq 2$ and computes $Y(K)$.

Proof. Compute a finite separable extension L_0/K_0 and a projective smooth model $\phi: Y \to C$ for Y_{L_0} as in Theorem 6.3. For simplicity, replace K_0 by L_0 by Remark 3.5. For the remainder of this proof, it will be convenient to work over k instead of k_0, so by base changing, we will consider Y and C as varieties over k. Suppose Y is embedded in \mathbb{P}^n_k, and choose a hyperplane H in \mathbb{P}^n_k. Compute the number N on the number on the right hand side of (6.3) by Remark 6.7. By Theorem 6.8 and Kodaira’s Lemma ([6], Proposition 3.4.2.6), $H^0(Y, n\omega_{Y/C} - H|_Y)$ is nonzero for sufficiently large n. Thus, compute some positive integer n and effective divisor D on Y such that $n\omega_{Y/C}$ is linearly equivalent to $H|_Y + D$. Compute the irreducible components C_1, \ldots, C_r of D, and compute the nonnegative integer

$$M := \max\{0, -C_i.C_i\}.$$

Note that if C' is an integral curve on Y, then $C'.D \geq -M$. A point $P \in Y(K)$ corresponds to a section s_P of ϕ. Let $E := s_P(C) \subset Y$. By Theorem 6.6,

$$E.H|_Y = E.\left(n\omega_{Y/C} - D\right) = n\left(E.K_Y - E.\phi^*K_C\right) - E.D = n\left((2g_C - 2 - E.E) - (2g_C - 2)\right) - E.D = -nE.E - E.D \leq nN + M.$$

Now, for each $1 \leq d \leq nN + M$, compute the Hilbert scheme H of 1-dimensional k-subschemes of \mathbb{P}^n_k of genus $g(C)$ and degree d, and let $\psi: H \to H$ be the universal family embedded in $\mathbb{P}^n_{k'} \times_k H$. If $H' \subset H$ is an irreducible component with generic point η and $h \in H'(k)$ is such that H_h is a smooth integral curve over k, then

(1) h is a reduced point,

(2) H_η is a smooth integral curve over $k(\eta)$, and

(3) H_h has genus $g(C)$ and degree d as a curve in \mathbb{P}^n_k.

Thus, compute the reduced loci H_1, H_2, \ldots, H_m of the irreducible components of H. Throw out any H_i if the curve H_i over the generic point $\eta \in H_i$ is not smooth and integral. Lastly, replace H_i by the open subset of $h \in H_i$ such that H_h is smooth and integral.

Claim 1. Let H' be a reduced locally closed subvariety of one of the H_i, and let H'' be the locus of $h \in H'$ such that $H_h \subset \mathcal{Y}_{k(h)} \subset \mathbb{P}^n_{k(h)}$. Then H'' is a computable closed subset of H'.

We prove Claim 1 by induction on the dimension of H'. It suffices to assume H' is irreducible and affine, say $H' = \text{Spec } A$. Let $H' \subset H$ be the preimage of H'. Let F denote the fraction field of A. Let $S := A[x_0, \ldots, x_n]$ be the homogeneous coordinate ring of \mathbb{P}^n_A and I be the homogeneous ideal for $H' \subset \mathbb{P}^n_A$.

Now, consider the following procedure given a homogeneous element f in S of degree e. Compute a projection $p_F: S_e \otimes_A F \rightarrow I_e \otimes_A F$ (here S_e and I_e denote the graded pieces of degree e in S and I respectively). Write p_F as a matrix with entries in F, and compute the localization A' of A by inverting the denominators of these entries. Thus, p_F spreads out to an A'-homomorphism $p_{A'}: S_e \otimes_A A' \rightarrow I_e \otimes_A A'$ that is the identity when restricted to $I_e \otimes_A A'$. Compute

$$f - p_{A'}(f) = \sum_{\alpha} a_{\alpha}(f)x^{\alpha}$$

(here we are using multi-index notation, i.e., if $\alpha = (\alpha_0, \ldots, \alpha_n)$ with $\alpha_0 + \cdots + \alpha_n = e$, then $x^\alpha := x_0^{\alpha_0} \cdots x_n^{\alpha_n}$).

Let f_1, \ldots, f_ℓ be homogeneous generators for the ideal for \mathcal{Y} thought of as elements of S. Let J be the radical of the ideal of A' generated by all the $a_\alpha(f_i)$, and let $A' := A'/J$. A point $h \in \text{Spec } A'(k)$ is such that $H_h \subset \mathcal{Y}$ if and only if $a_\alpha(f_i)$ vanish at h for all α and i. Thus, Spec A'' is the intersection of the desired closed subvariety H'' with Spec A'. The complement $H' \setminus \text{Spec } A'$ has dimension less than the dimension of H', so by induction, we have proved Claim 1.

Apply Claim 1 to each H_i to compute the locally closed subvariety $Z \subset H$ of points $h \in H(k)$ such that H_h is a smooth integral curve contained in \mathcal{Y}, and let $Z \subset H$ be the preimage of Z. Let ϕ' be the composition of Z-morphisms $Z \rightarrow \mathcal{Y} \times_k Z \rightarrow C \times_k Z$. We now wish to determine the set of $h \in Z(k)$ such that $\phi'_{h|Z}: Z_h \rightarrow C$ is an isomorphism.

Claim 2. Let $h \in Z(k)$ be a point such that $\phi'_{h|Z}: Z_h \rightarrow C$ is an isomorphism. Then h is an isolated point of Z.

To see this, let h be such a point. Let ε denote the generic point of C and consider the pullback morphism $\phi'_\varepsilon: Z_\varepsilon \rightarrow \varepsilon \times Z$. Notice that the set of $h' \in Z(k)$ such that $\phi'_{h'|Z}$ is a nonconstant morphism is the set of $h' \in Z(k)$ in the image of ϕ'_ε. But, ϕ'_ε is the composition of flat morphisms $Z_\varepsilon \rightarrow Z \rightarrow Z$, so the image of ϕ'_ε is an open subset U of Z containing h. Let $U \subset Z$ be the preimage of U. Then $\phi'_{\varepsilon|U}: V \rightarrow C \times_k U$ is quasi-finite. Furthermore, $\phi'_{\varepsilon|U}$ is proper because $C \times_k U \rightarrow U$ is separated and the composition $U \rightarrow C \times_k U \rightarrow U$ is proper, so $\phi'_{\varepsilon|U}$ is finite. Let $x \in Z_h$ be any point. The cardinality of fibers of $\phi'_{\varepsilon|U}$ is an upper semicontinuous function, so there exists some open $V \subset U$ containing x such that ϕ' restricts to an isomorphism on V. Let $V \subset U$ be the (open) image of V. For every $h' \in V(k)$, the morphism $\phi'_{h'|V}: Z_{h'} \rightarrow C$ is an isomorphism. The inverse $C \rightarrow Z_{h'}$ composed with $Z_{h'} \rightarrow \mathcal{Y}$ defines a section of ϕ. There can only by finitely many such sections by Theorem 6.9, so V is 0-dimensional. This proves Claim 2.
To compute $Y(K)$, compute the 0-dimensional irreducible components h_1, \ldots, h_s of Z and determine which give rise to isomorphisms $Z_{h_i} \to C$. Lastly, compute their inverses $C \to Z_{h_i}$ and their corresponding elements of $Y(K)$.

Proof of Theorem 1.1, assuming $\tilde{g} \geq 2$ and Y is nonisotrivial. Assume Input 3.14. Compute $Y(K)$ using Theorem 6.10, and then compute $X(K)$ as preimages of π.

Proof of Corollary 1.2. If $X(L)$ is finite for every finite separable extension L of K, then neither of the following can be true for X:

(i) X is smooth of genus 0 or 1,

(ii) X is smooth of genus at least 2 and is isotrivial.

Thus, X is either smooth of genus at least 2 and not isotrivial, in which case we use Theorem 6.10, or X is not smooth, in which case we use Theorem 1.1.

References

