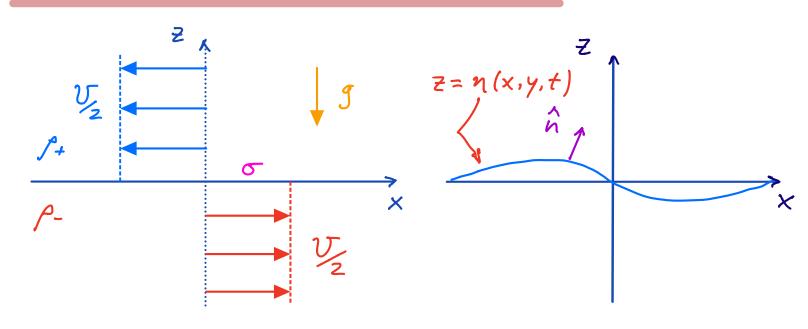
Lecture 14. Instability of superposed fluids



• in addition to the Rayleigh - Platean instability,
fluid fracture and drop termation may be caused
by shear-driven or gravitationally-driven instability

Define interface: $h(x,y,z) = 2 - \eta(x,y) = 0$ $\Rightarrow \overline{\nabla}h = (-\eta_x, -\eta_y, 1)$

and $\hat{n} = \frac{\vec{\nabla} \hat{h}}{|\vec{\nabla} \hat{h}|} = \frac{1}{(1 + M_{x}^{2} + M_{y}^{2})^{\frac{1}{2}}} \left(-N_{x}, -M_{y}, 1\right)$

Describe How as musscid, irrotational.

Basic State: $\eta = 0$, $\mathcal{U} = \nabla \phi$, $\phi = \mp \pm \mathcal{V} \times$ in 220

Perturbed State: $\phi = 7 = 5 \mathcal{V}_{x} + \phi_{x}$ in 220

Solve $\nabla \cdot u = \nabla^2 \phi_{\pm} = 0$ subjects to BCs

2. Knematic BC:
$$\frac{\partial M}{\partial t} = 21 \cdot \hat{n}$$

where $M = \nabla \phi = \nabla \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \nabla x + \phi + \phi \right)$
 $= \frac{1}{2} \cdot \nabla \hat{c} + \frac{\partial \phi_{+}}{\partial x} \cdot \hat{c} + \frac{\partial \phi_{+}}{\partial y} \cdot \hat{c} + \frac{\partial \phi_{+}}{\partial z} \cdot \hat{c}$

and $\hat{n} = \left(-M_{\times}, -M_{Y}, 1 \right)$ when inversion with small partial barions.

Into $A = \frac{1}{2} \cdot \frac{1}{$

Linearizing:

$$P_{\pm} \frac{\partial \phi_{\pm}}{\partial t} + \frac{1}{2} P_{\pm} \left(\mp \mathcal{V} \frac{\partial \phi_{\pm}}{\partial x} \right) + P_{\pm} + P_{\pm} gn = G(t)$$

$$\Rightarrow P_{\pm} - P_{\pm} = \left(P_{\pm} - P_{\pm} \right) gn + \left(P_{\pm} \frac{\partial \phi_{\pm}}{\partial t} - P_{\pm} \frac{\partial \phi_{\pm}}{\partial t} \right) + \frac{\mathcal{V}}{2} \left(P_{\pm} \frac{\partial \phi_{\pm}}{\partial x} - P_{\pm} \frac{\partial \phi_{\pm}}{\partial x} \right)$$

$$= -0 \left(q_{\text{Max}} + q_{\text{VY}} \right)$$

is the lineared normal stress BC.

Seek normal moder (wave-like solms) of the form:

$$N = N_0 e^{i\alpha x + i\beta y + \omega t} = N_0 e^{i\alpha x + i\beta y + \omega t}$$

where $K = (K_{\text{R}}, K_{\text{T}}) = (K_{\text{R}}, K_{\text{T}}) = (K_{\text{R}}, K_{\text{T}}) = (K_{\text{R}}, K_{\text{T}}) = K_{\text{T}} e^{i\alpha x + i\beta y + \omega t}$

where $D^2 \phi_{\pm} = 0$ requires that $K^2 = \kappa^2 + \beta$

Apply kinematic $BC = \frac{\partial \phi_{\pm}}{\partial t} = \frac{\partial \eta}{\partial t} \mp \frac{1}{2} \mathcal{V} \frac{\partial \eta}{\partial x}$ at $t = 0$

$$\Rightarrow \mp K \phi_{0\pm} = \omega \gamma_0 \mp \frac{1}{2} i\kappa \mathcal{V} \gamma_0 \quad \boxtimes$$

No 1 Stress BC:

Normal Stress BC:

$$-k^{3}\sigma = \omega \left[\rho_{+}(\omega - \frac{1}{2}i\omega \mathcal{V}) + \rho_{-}(\omega + \frac{1}{2}i\omega \mathcal{V}) \right]$$

$$+ gk(\rho_{-}-\rho_{+}) + \frac{1}{2}i\omega \mathcal{V} \left[\rho_{+}(\omega - \frac{1}{2}i\omega \mathcal{V}) + \rho_{-}(\omega + \frac{1}{2}i\omega \mathcal{V}) \right]$$

$$\Rightarrow \omega^{2} + i\omega \mathcal{V} \left(\frac{\rho_{-}-\rho_{+}}{\rho_{+}+\rho_{-}} \right) \omega - \frac{1}{4}\omega^{2}\mathcal{V}^{2} + k^{2}C^{2} = 0$$

where
$$C_0^2 = \left(\frac{p_- - p_+}{p_- + p_+}\right) \frac{g}{k} + \frac{\sigma}{p_- + p_+} k$$

Dispersion Relation: W(K)

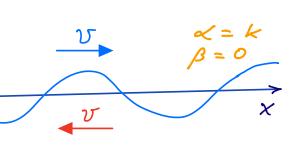
$$\omega = \frac{1}{2} i \left(\frac{f_{+} - f_{-}}{f_{-} + f_{+}} \right) k \cdot \mathcal{V} + \begin{cases} \frac{f_{+} + f_{-}}{f_{-} + f_{+}} \\ (p_{-} + f_{+})^{2} \end{cases} (k \cdot \mathcal{V})^{2} k^{2} c^{2}$$
Where $k = (\alpha, \beta)$, $k^{2} = \alpha^{2} + \beta^{2}$

System is UNSTABLE if Re(w) > 0, i.e. if

$$\frac{p_{+}p_{-}}{p_{-}+p_{+}}\left(\underline{k}\cdot\underline{v}\right)^{2} > k^{2}C_{o}^{2}$$

Squives Theorem: disturbances with wavenumber $K = (K, \beta)$ parallel to V are the most unstable

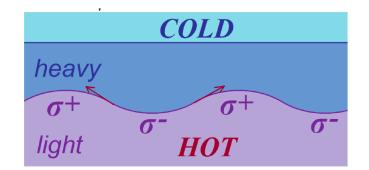
property of shear flows: _
most unstable waves have
crests perpendicular to wind



Two Important Special Cares	
I. Rayleigh - Taylor Instability (heavy over)	light
· P+ > P, , V = 0	19
Via & we see that system is unstable it	\
$C_0^2 = \left(\frac{p p_+}{p + p_+}\right) \frac{9}{k} + \frac{\sigma}{p + p_+} k < 0$	
$\frac{i.e.}{g} \rho_{+} - \rho_{-} > \frac{\sigma k^{2}}{g} = \frac{4\pi^{2}\sigma}{g\lambda^{2}}$	
1 > 2 The for instability	
Note: 1. system statilized to small I disturbed by o	مدو
3. in a finite container, if its width is less than $\int_{c} = 2\pi \left[\frac{(P+-P-)9}{5}\right]^{-\frac{1}{2}}$ then the system will be stubbe	<i>ح</i> د سر
4. with bddies, the instability may be	

4. with bddies, the instability may be stabilized by a temperature gradient

- Mavangoni Hows act to vesist surface detornation



Instability of a thin layer: a heuristic arjument

Change in Surface Energy:

$$E_{s/cn} = \sigma \Delta l = \sigma \left(\int_{0}^{1} ds - l \right) = \frac{1}{4} \sigma \mathcal{E}^{2} \mathcal{A}^{2} \mathcal{A}$$

Change in
$$GPE$$
:

$$\frac{\rho}{x} = h + h_0 + \epsilon \cos kx$$

DEg/cm = \(- \frac{1}{2} \rightarrow \left(h^2 - h_0^2 \right) dx = - \frac{1}{41} \rightarrow 52 \right\}

When is the total energy decreased?

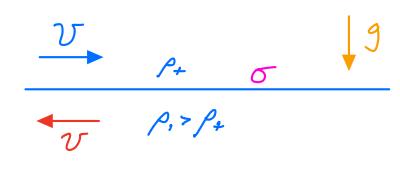
When SETOTAL = DEs + DEg < 0

ise. pg > ok => 1 > 2TTle unstable to

II. Kelvin-Helmholtz Instability

: gravitationally stable, but destabilized by shear · P- = P+

"WIND BLOWING OVER WATER"



Take k provided to V, so that $(k \cdot V)^2 = k^2 V^2$ and ristability criterion: NB: $k = \frac{2\pi}{3}$

 $P - p_{+} V^{2} > (P - P_{+}) g \frac{1}{2\pi} + O \frac{2\pi}{1}$

Note: 1. system stabilized to large of
disturbances by 9
2. " " " short I " " o

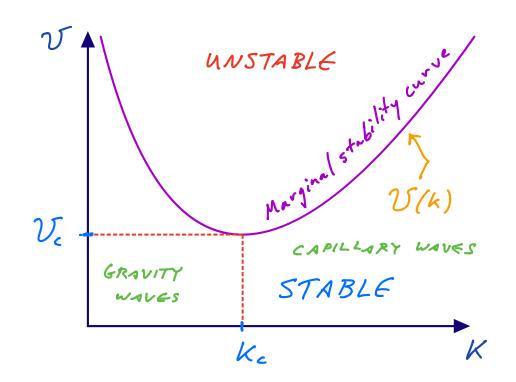
3. for any given I (or k), one may
find a critical V for which this
mode is unstable.

Marginal Stability Curve:

 $V(k) = \left[\frac{f_{-} - f_{+}}{p_{-} p_{+}} \frac{g}{k} + \frac{1}{p_{-} p_{+}} \sigma k \right]^{\frac{1}{2}}$

has a MINIMUM where $\frac{dv}{dk} = 0$ i.e. $\frac{d}{dk}v' = 0$

 $\frac{ie}{k^2} - \frac{\Delta p}{k^2} + \delta = 0 \implies k_c = \sqrt{\frac{\Delta pq}{\delta}} \sim \frac{1}{k_{cap}}$



Covvesponding $V_c = V(k_c) = \frac{Z}{p_p} \sqrt{\Delta p_g \sigma}$ is the MIN V required to gene vate waves

Air blowing over water:

$$U_{c}^{2} = \frac{2}{1.2 \times 10^{-3}} \sqrt{1.10^{3}.70} \Rightarrow U_{e}^{2} = 650 \text{ cm/s}$$

$$U_{c}^{2} = \frac{2}{1.2 \times 10^{-3}} \sqrt{1.10^{3}.70} \Rightarrow U_{e}^{2} = 650 \text{ cm/s}$$

Note: influence of surfactants on waves is to kill small I disturbances

> - Mavangoni elustrity generates vortices, dissipation on the scale of the waves