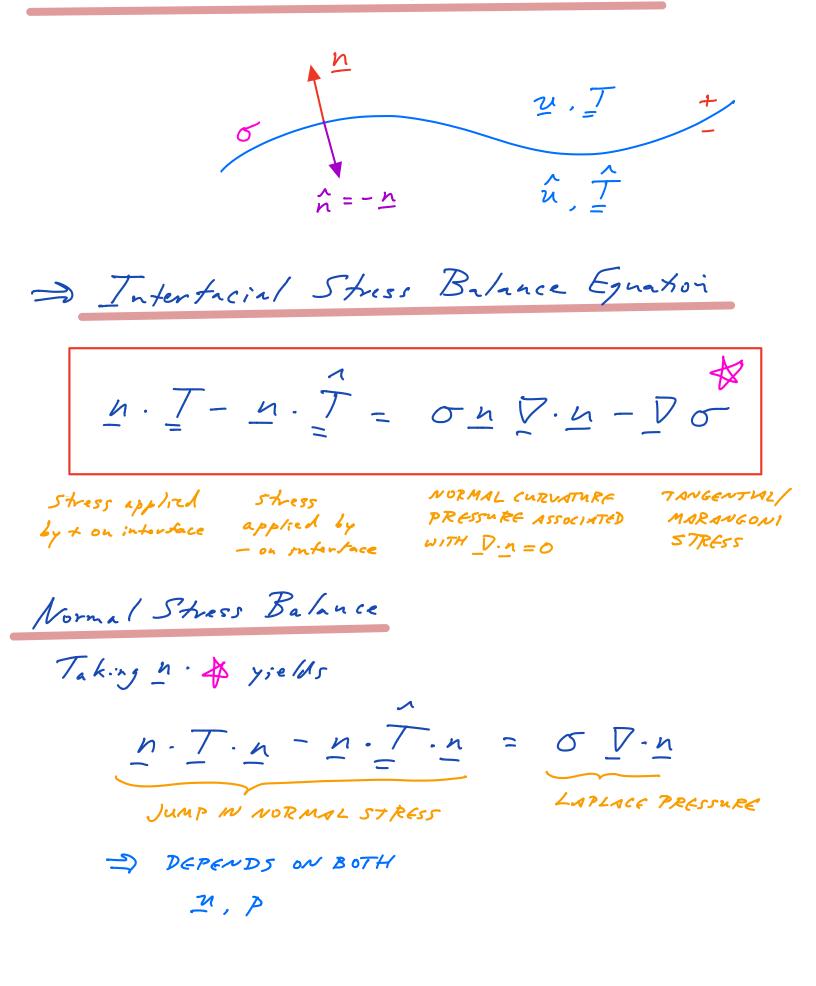
Lecture 5. Interfacial boundary conditions, Statics



Curvature Forces : An aside ... String under tension T T String under tension sags due T, p T, p T dm T to gravity I wt supported by Curvature force langential Stress Balance Taking t. A, where t is ANY vector tangent to the interface: $h \cdot T \cdot t - n \cdot T \cdot t = V \sigma \cdot t$ MARANGONI STRESS JUMP IN TANGENTIAL STRESS Assoc. ~ Vo Note: 1. Do may arise since O(C,T) Chemistry 2 temperature J Mavangoni stresses avise from DC or DT 2. the LHS contains only velocity gradients, not pressure; therefore, a non-zero Do at at a fluid interface ALWAYS drives motion.

Quick Review on Computing Normals
Normal to $Z = f(x, y)$
Detine functional :
g(x, y, z) = z - f(x, y)
=0 on ~
$\vec{p}_q = \vec{p}(z - f(x, y)) \times$
$= -f_{x}\hat{i} - f_{y}\hat{j} + \hat{k}$
and $\hat{n} = \frac{\vec{\nabla}g}{ \vec{\nabla}g } = \frac{\hat{k} - f_x \hat{i} - f_y \hat{j}}{\sqrt{1 + f_x^2 + f_y^2}}$
and curvature deduced from I'm.
Special Case : normal to curve Z = f(x)
$\implies N = \frac{\hat{k} - f_{\times}\hat{i}}{V_{1 + f_{\times}^{2}}} \qquad \qquad$
$\overline{V} \cdot \underline{m} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{k} \frac{\partial}{\partial z}\right) \cdot \left(\frac{\hat{k} - f_x \hat{i}}{\sqrt{1 + f_x^2}}\right)$ $= \frac{-f_{xx}}{(1 + f_x^2)^{3/2}}$
A 1 left dil acometre Drawiter some

An Aside: differential geometry provides some useful relations between Mandt.

 $(\underline{V}\cdot\underline{n})\underline{n} = \frac{dt}{dl}$ 3 PROPORTIONAL TO LURVATURG PRESSURE AT INTERFACE $-\left(\underline{\nabla}\cdot\underline{n}\right)\underline{\tau} = \frac{d\underline{n}}{dl}$ Fluid Statics • the stress tensor reduces to T = -p = T, so that n. T.n = - P and the normal stress balance : $\tilde{p} - p = \sigma P \cdot n$ LAPLACE PRESURE • tangential stress must take the form DO=0. - THERE CON'T BE A STATIC SYSTEM in the presence of $\vec{D}\sigma \neq 0$ Let's consider now a comple of static systems. I. Stationary Bubble P P P Recall in spherical coords $\overline{\nabla} \cdot \overline{F} = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \overline{F_r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \overline{F_{\theta}} \right)$ + isno of Fo Here $\overline{F} = \underline{n} = (1, 0, 0)$ in $(\underline{n}, \overline{\sigma}, \phi)$ coords $\Rightarrow \underline{\nabla} \cdot \alpha = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2) = \frac{2}{R}$

$\Rightarrow \Delta p = \hat{p} - P = \frac{2\sigma}{R}$ as previously
II. The Static Meniscus
Pressure varies according to P(2) = PotpgE.
Normal stress balance:
$P_{o} - pg\eta(x) = P_{o} + \sigma V \cdot \eta$ $h \qquad \qquad$
$P_{o} - pgm(x) = P_{o} + \sigma \nabla \cdot \underline{n}$ $\Rightarrow - p_{j}g(x) = \sigma \nabla \cdot \underline{n}$ $\Rightarrow - p_{j}g(x) = \sigma \nabla \cdot \underline{n}$
Now $\overline{U} \cdot \underline{n} = -\frac{M_{XX}}{(1+M_X^2)^{3/2}}$
Approximate sola : it slope is everywhere small $(M_{x} \leftarrow 5)$, we obtain $(1 + M_{x}^{2})^{3/2} \approx 1$
Pg7= onxx
Apply BCs: m(a) = 0 and Mx(o) = - cot to
Solving: $\eta(x) = l_c \cot \phi e^{-x/l_c}$
where le = V Jpg is capillary note
Note: meniscus drops off on a scale of le.
But let's now solve A exactly.

We can integrate directly $p_{g}\eta\eta\chi = O \frac{\eta_{\chi}\eta_{\chi\chi}}{(1+\eta_{\chi}^{2})^{3/2}}$ $\frac{d}{dx}\frac{m}{2} = lc^{2}\frac{d}{dx}\frac{l}{(1+m_{x}^{2})^{\frac{1}{2}}}$ Integrate from x to as : $LHS = \int \frac{d}{\sqrt{x}} \frac{\eta^2}{2} dx = \frac{1}{2} \left[\frac{\eta^2(\omega)}{2} - \frac{\eta^2}{2} (x) \right] = -\frac{\eta^2}{2}$ $RHS = \int \frac{d}{dx} \frac{1}{(1+\eta_{x}^{2})^{\frac{1}{2}}} \, dx = \frac{1}{(1+0)^{\frac{1}{2}}} - \frac{1}{(1+\eta_{x}^{2})^{\frac{1}{2}}} = 1 - \sin\theta$ $\Rightarrow \sigma \sin \phi + \frac{1}{2} \rho g \eta^2 = \sigma \phi$ Note: at z = h, $\Phi = \Phi_e = \frac{1}{2} \frac{1}{2} p_j h^2 = \sigma(1 - \sin \theta_e)$ \Rightarrow $h = NZ l_e (1 - sin \partial_e)^{\frac{1}{2}}$ is the maximum vise height Consider the force balance on a portion of the eniscus. $P = P_{0}$ Horizontal Force Balance

 $\sigma sin \phi + 2 \rho g \eta^2$ 0 hydrostatic horizontal tensile stress Suctor projection of ST, from oT2 Vertical Force Belance $\frac{\sigma}{2r}\frac{\cos \phi}{r} = \int_{p}^{\infty} \frac{g}{2} dx$ $\frac{x}{r} = \int_{p}^{\infty} \frac{g}{2} dx$ Vertical proj. wt of the fluid of 57, The latter makes clear that, setting X = 0 (where $\theta = \theta_e$) => or coste = wt of third hisphred above 2=0 =) changes sign according to whether De> I on De < IT air water $) \theta_e > \frac{\pi}{2}$ Floating Bodies "Heavy things sink. Light things float." -> Not really true for small objects.

Recall: Archimedean force on a submerged body. In general, the hydrodynamic P. 2 air force acting on a body in a fluid : H_2O $F_n = \int_{-\infty}^{\infty} T \cdot n \, ds'$ $P(z) = p_0 + p_2 z$ where $T = -p \stackrel{T}{=} + 2m \stackrel{T}{=}$ = $-p \stackrel{T}{=} for statics$ $V \stackrel{n}{>}$ $\Rightarrow F_n = -/p_n d_s = -/p_{2n} d_s$ = -pg/VzdV by Gen Div The $= -pg \int dV \hat{z} = -pg V \hat{z}$ = wt of displaced third Archimedes Principle: buoyout force is equal to the wt of the displaced Huid Generalization to Floating Bodies Lase 1 : Large bodies (R>> lc) Force balance $M_g = \int pg \underline{n} \cdot \hat{z} d\beta' + 2\pi R \sigma \underline{t} \cdot \hat{z}$ Sud Bhoyancy SURFACE TENSON

 $\frac{g}{air} \qquad M \qquad R \quad \sigma t \qquad P_0 \quad z=0$ $\frac{H_2O}{H_2O} \qquad V_{Sub} \qquad P(z) = R - p_j z$ $\Rightarrow M_{g} = p_{g} V_{sub} + 2\pi R \sigma t \cdot \hat{z}$ BNOYANCY ~ Pg Vsub ~ Pyk ~ R² CAPILLARITY ~ 2TTRO RO RO - Ro - Ro where Bondnumber Bo = PgR2 > 5 negligible provided R >> le (ase 2 : Small bodies (REle) Vertical Force belance: Mg = Fb + Fc Vm Ve Vm Buoyancy: $F_{5} = \int p_{g} z \pm i \hat{z} dl \quad \sigma_{5} = \int p_{g} z$ $c = \rho_g V_c$ where Ve = volume above body, but inside the contact Capillary : Fc = 20 sind