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A trajectory equation for walking droplets:
hydrodynamic pilot-wave theory
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We present the results of a theoretical investigation of droplets bouncing on a vertically
vibrating fluid bath. An integro-differential equation describing the horizontal motion
of the drop is developed by approximating the drop as a continuous moving source
of standing waves. Our model indicates that, as the forcing acceleration is increased,
the bouncing state destabilizes into steady horizontal motion along a straight line, a
walking state, via a supercritical pitchfork bifurcation. Predictions for the dependence
of the walking threshold and drop speed on the system parameters compare favourably
with experimental data. By considering the stability of the walking state, we show that
the drop is stable to perturbations in the direction of motion and neutrally stable to
lateral perturbations. This result lends insight into the possibility of chaotic dynamics
emerging when droplets walk in complex geometries.
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1. Introduction
In a remarkable series of recent experiments, Yves Couder and coworkers have

demonstrated phenomena reminiscent of quantum mechanics in a macroscopic
hydrodynamic system (Eddi et al. 2009; Couder & Fort 2006; Fort et al. 2010).
Specifically, they have discovered that millimetric droplets walking on a vibrating
fluid bath exhibit several features previously thought to be peculiar to the microscopic
quantum realm (Bush 2010). Eddi et al. (2009) demonstrated that the droplets can
‘tunnel’ across shallow fluid regions where walking is forbidden, which is reminiscent
of electrons tunnelling through classically forbidden regions of space. Fort et al.
(2010) observed orbital quantization of walkers on a rotating fluid bath, and developed
an analogy between the drop’s quantized orbits and the Landau levels of an electron
in a uniform magnetic field. Eddi et al. (2012) demonstrated that pairs of walkers
orbiting in a rotating frame exhibit orbital level splitting. Couder & Fort (2006)
explored hydrodynamic analogues of particle diffraction in single- and double-slit
geometries by directing walkers towards gaps between submerged barriers. Harris
et al. (2013) examined the statistics of walking droplets confined to a circular cavity,
a hydrodynamic analogue of a quantum corral (Crommie, Lutz & Eigler 1993). In
both the diffraction and corral experiments, the complex walker dynamics may give
rise to a coherent statistical behaviour with wave-like features. We here develop an
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integro-differential trajectory equation for these walking droplets with a view to
gaining insight into their subtle dynamics.

Consider a fluid bath vibrating vertically with acceleration γ cosωt, where ω = 2πf .
When γ is increased beyond γF, the fluid surface goes unstable to a standing field
of Faraday waves. The critical acceleration γF, the Faraday threshold, depends on the
fluid viscosity, depth, and surface tension. At the onset of instability, subharmonic
waves with frequency ω/2 emerge; at higher γ , higher harmonics of frequency nω/2
(for integer n) can arise. This system was first examined by Faraday (1831), and has
since been explored by many others (Douady 1990; Miles & Henderson 1990; Müller,
Friedrich & Papathanassiou 1998). A theoretical description of Faraday waves was
developed for inviscid fluids by Benjamin & Ursell (1954) and extended to the case
of viscous fluids by Kumar (1996). In this paper, we will only consider the regime
γ < γF, for which the flat interface would be stable if not for the presence of a drop.

Walker (1978) demonstrated that droplets can be made to bounce indefinitely at
frequency ω on the surface of a vertically vibrating bath of the same fluid. When
γ < γB, γB being the bouncing threshold, the drop simply coalesces with the fluid
bath; however, for γ > γB, coalescence is precluded by the sustenance of an air layer
between the drop and bath for the duration of the drop impact (Couder, Gautier
& Boudaoud 2005). The first theoretical examination of the bouncing process is
presented by Couder et al. (2005) and built upon by Moláček & Bush (2013a). In
summary, the drop bounces provided its contact time is less than the time required
for the air layer between the drop and bath to drain to a critical thickness of
approximately 50 nm, at which coalescence is initiated. Moláček & Bush (2013a)
developed a complete theoretical description of the bouncing drop dynamics that
provides a rationale for all reported periodic and chaotic bouncing states (Wind-
Willassen et al. 2013).

Protière, Boudaoud & Couder (2006) demonstrate that, as γ is increased beyond
γB, the drop undergoes a sequence of bifurcations. First, the drop undergoes a period-
doubling transition, after which it bounces at frequency ω/2. Its bouncing frequency
is then commensurate with the frequency of the least stable Faraday mode, which
is thus locally excited through the resonant interaction between drop and bath. For
γ > γW > γB, γW being the walking threshold, the waves generated by the drop
destabilize the bouncing state. If the drop is perturbed in some direction, it lands on a
sloping interface and so receives a horizontal force on impact that propels it forward.
In certain parameter regimes delineated by Protière et al. (2006) and Eddi et al. (2008)
and rationalized by Moláček & Bush (2013b), the resulting walking state is quite
robust: the drop can walk steadily and stably at a uniform horizontal velocity while
bouncing vertically at frequency ω/2. Images of a walking drop and its associated
wave field are shown in figure 1.

The coupled vertical and horizontal dynamics of a walking drop were considered by
Moláček & Bush (2013b), who elucidated the walker’s rich and complex behaviour.
For example, the walker may switch between various vertical bouncing modes that
coexist for identical system parameters, or walk in an irregular fashion while bouncing
chaotically (Wind-Willassen et al. 2013). The authors also highlight the importance
of the walker’s phase with respect to the bath. The amplitude of the waves generated
by the drop has a complicated dependence on system parameters through the walker’s
phase, owing to the coupling between the horizontal and vertical motion. For the sake
of simplicity, we consider the special case of ‘resonant walkers’, for which the drop
is in a period-doubled bouncing mode, so its vertical motion is precisely synchronized
with the underlying wave. We thus neglect the coupling between the horizontal and
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(a) (b)

FIGURE 1. (Colour online) A walker, a millimetric droplet, self-propagates on a vibrating
fluid bath through an interaction with its own wave field. (a) Oblique view. (b) Top view.

vertical motion and average over the vertical motion, which allows us to construct and
study a trajectory equation for the walker’s horizontal motion.

As the propulsive wave force on the walking drop depends on the location of its
prior impacts, and so on the walker’s past, Fort et al. (2010) and Eddi et al. (2011)
introduced the concept of path-memory. The quantum mechanical features arise only
in the high path-memory regime, close to the Faraday threshold, where the waves
generated by the walker decay slowly in time and so strongly affect the drop’s
dynamics (Couder & Fort 2006; Fort et al. 2010; Harris et al. 2013). In this regime,
the drop’s trajectory is most strongly influenced by its history, which is effectively
stored in the wave field. The goal of the current study is to provide insight into these
experiments by developing a trajectory equation for the walkers that illustrates the
influence of path-memory on their dynamics.

Protière et al. (2006) postulate the following trajectory equation for the horizontal
position xp of the drop, in the absence of barriers and external forces:

mẍp + Dẋp = Fb sin
(

2πẋp

VF

)
, (1.1)

where m is the drop mass, Fb the effective force due to bouncing on an inclined
surface, D the viscous damping coefficient, and VF the phase velocity of the Faraday
waves. Equation (1.1) is derived by time-averaging the horizontal force on the drop
over a single bouncing period, and it correctly predicts a supercritical pitchfork
bifurcation to a walking state; however, we will see that it only includes the effect
of a single previous bounce on the drop’s trajectory. A similar approach was taken by
Shirokoff (2013) in his theoretical description of walkers in confined geometries. Both
papers attempt to model the path-memory through the coefficient Fb. We here develop
an improved trajectory equation that explicitly models the system’s path-memory by
incorporating the drop’s entire history.

In § 2, we derive an integro-differential equation of motion for the drop by adopting
the results presented by Moláček & Bush (2013b). The equation indicates that the
bouncing state destabilizes at a critical acceleration γ into straight-line walking, as
shown in § 3. We present an exact formula for the walking speed and compare it to
experimental data in § 4, where we also explore the dependence of the guiding wave
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field on the walking speed. The stability of the walking solution is analysed in § 5.
Future directions and applications of the model are discussed in § 6.

2. Integro-differential equation of motion
Consider a drop of mass m and radius R in the presence of a gravitational

acceleration g walking on the surface of a vertically vibrating fluid bath of surface
tension σ , density ρ, dynamic viscosity µ, kinematic viscosity ν, and mean depth
H. Let xp(t) = (xp(t), yp(t)) denote the horizontal position of the drop at time t. We
assume that the drop is a resonant walker in the period-doubled regime, so the
vertical motion is periodic with period TF = 4π/ω. The force balance in the horizontal
direction yields the equation of motion

mẍp + Dẋp =−F(t)∇H (xp, t), (2.1)

where all terms represent time-averages over the bouncing period TF, and F(t) is the
vertical force on the drop (Moláček & Bush 2013b). The drop moves in response to
both propulsive and drag forces. The propulsive force is the wave force imparted by
the sloping bath surface during impact. We express the total fluid depth as H+H (x, t),
where we assume the perturbation height H (x, t)� H to be small. The horizontal
component of the propulsive force may then be approximated by −F(t)∇H (xp, t).
The drop motion is opposed by a drag force −Dẋp, where the time-averaged drag
coefficient D can be written in terms of the system parameters as (Moláček & Bush
2013b)

D= Cmg

√
ρR

σ
+ 6πµaR

(
1+ πρagR

6µaω

)
, (2.2)

where µa = 1.84×10−5 kg m−1 s−1 and ρa = 1.2 kg m−3 are the dynamic viscosity and
density of air, and C is the non-dimensional drag coefficient. In (2.2), the first term
arises from the transfer of momentum from the drop to the bath during impact, and the
second from the aerodynamic drag exerted on the droplet during flight. We note that
C actually depends weakly on the system parameters, and 0.17 6 C 6 0.33 over the
parameter range of interest for walkers (Moláček & Bush 2013b). For our purposes, it
suffices to treat C = 0.17 as a constant, a value consistent with the experimental data
for ν = 20 cS, f = 80 Hz and ν = 50 cS, f = 50 Hz (Moláček & Bush 2013b).

To determine an expression for the interface deflection H (x, t), we first consider
the interface deflection hn(x, t) generated by the single bounce of a drop at time tn

and position xp(tn). We assume the fluid container to be sufficiently large that we
may neglect the influence of boundaries. When the drop hits the surface, it emits a
travelling transient wave that is typically an order of magnitude faster than the walker
(Eddi et al. 2011). We neglect this wave in our model because it does not interact with
the drop on subsequent bounces. In the wake of the transient wave, a field of standing
waves persists on the interface. Eddi et al. (2011) numerically model this standing
wave field as

hn(x, t)=
∞∑

m=1

am(t − tn)J0

(
km|x− xp(tn)|

)
, (2.3)

where J0 is a Bessel function of the first kind, the wavenumbers km satisfy the
relation J0(kmr0) = 0, and r0 is a numerical cutoff parameter. The time-dependence is



556 A. U. Oza, R. R. Rosales and J. W. M. Bush

prescribed by the functions am(t), which satisfy the equation

äm + 2νphenk2
mȧm + am

(
g− γ cosωt + σk2

m

ρ

)
km tanh kmH = 0, (2.4)

where νphen & ν is the phenomenological kinematic viscosity of the fluid, chosen to
match the observed Faraday threshold.

Rather than summing over infinitely many modes, we make some simplifying
assumptions that make the model more tractable. Since γ < γF, the fluid surface
is stable, so all disturbances decay in time. The slowest decaying mode is the
subharmonic Faraday wave with temporal decay time TFMe, where Me is the non-
dimensional memory parameter

Me =Me(γ )≡ Td

TF (1− γ /γF)
(2.5)

(Eddi et al. 2011), and Td is the temporal decay time in the absence of forcing
(Moláček & Bush 2013b). In the short-path-memory limit, just above the walking
threshold Me & Me(γW), the standing waves generated by the drop decay relatively
quickly, so the droplet motion depends only on its recent past. In the long-path-
memory limit, close to the Faraday threshold Me � Me(γW), the standing waves are
long-lived, so the walker is more strongly influenced by its history. Both Td and γF

can be calculated numerically for different fluids and forcing frequencies (Kumar 1996;
Moláček & Bush 2013b).

The Faraday wave oscillates in time with frequency ω/2, and its dominant
wavenumber kF can be calculated numerically (Kumar 1996; Moláček & Bush 2013b)
or approximated as the solution to the standard water-wave dispersion relation:

(ω
2

)2 =
(

gk + σk3

ρ

)
tanh kH. (2.6)

In the experiments, the Faraday wavenumber is typically kF ≈ 1.25 mm−1, which
corresponds to a Faraday wavelength of λF ≈ 5 mm. Fort et al. (2010) approximate the
Faraday wave generated by a single bounce as

hn(x, t)= A

|x− xp(tn)| cos
(
kF|x− xp(tn)| + φ

)
e−|x−xp(tn)|/δe−(t−tn)/(TFMe), (2.7)

where the parameters A and δ are determined experimentally, and φ is a free parameter.
While this model allows them to reproduce many of the experimental results and
provides an adequate description in the far field kF|x − xp(tn)| � 1, it contains a
troubling singularity at x = xp(tn), and the phase-shifted cosine does not accurately
describe the spatial dependence of the Faraday wave near the drop.

Following Moláček & Bush (2013b), we approximate the wave as a radial Bessel
function of the first kind, J0, with a single dominant wavenumber kF. This gives the
interface height after a single bounce at time t = tn:

hn(x, t)= ÃJ0(kF|x− xp(tn)|)e−(t−tn)/(TFMe) cos
ωt

2
H(t − tn), (2.8)
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where H(t) is the Heaviside step function. The amplitude Ã can be expressed in terms
of the system parameters as

Ã=
√

2
π

kFR

3k2
FR2 +Bo

Rk2
Fν

1/2
eff

σ
√

TF
mgTF sin

Φ

2
, Bo= ρgR2

σ
, νeff = νDµ (2.9)

where Bo is the Bond number, νeff is the effective kinematic viscosity, and Φ is
the mean phase of the wave during the contact time (Moláček & Bush 2013b). The
coefficient Dµ is defined as (Prosperetti 1976; Moláček & Bush 2013b)

Dµ =−r1 + r2

2ar1r2
where a= Oh(RkF)

3/2[
Bo+ (RkF)

2
]1/2 , Oh= µ√

ρσR
, (2.10)

and r1 and r2 are the roots with largest real part of the polynomial

p(x; a)= x4 + 8ax3 + (2+ 24a2)x2 + a(8+ 16a2)x+ 1+ 8a2. (2.11)

We note that the formula for the interface height (2.8) with amplitude Ã is an
approximation to that given by Moláček & Bush (2013b). Here we neglect the t−1/2

temporal decay of the waves, as the decay rate is dominated by the exponential
e−(t−tn)/(TFMe). The algebraic factor t−1/2 is only valid for t > TF and makes the
governing equation analytically intractable; thus, for the sake of simplicity we replace
it by the constant T−1/2

F . In addition, we neglect the possibility of multiple vertical
bouncing modes for a single forcing acceleration γ (Moláček & Bush 2013b; Wind-
Willassen et al. 2013). For a particular bouncing mode, the impact phase Φ depends
in general on µ, R, and γ ; however, it depends only weakly on γ in the high-memory
limit of interest, so we treat it as a constant for a given drop.

We assume the surface waves to be linear, so that we can apply the superposition
principle. Thus, the interface height H (x, t) may be expressed as the sum of the
individual waves hn(x, t) generated by previous bounces at prior times tn = nTF:

H (x, t)=
∑

n

hn(x, t)=
bt/TFc∑
n=−∞

ÃJ0(kF|x− xp(nTF)|)e−(t−nTF)/(TFMe) cos
ωt

2
. (2.12)

As shown in Moláček & Bush (2013b), since the drop’s bouncing period TF is equal
to the period of the surface waves, we may replace F(t)∇H (xp, t) by mg∇h(xp, t),
where

h(x, t)=
bt/TFc∑
n=−∞

AJ0(kF|x− xp(nTF)|)e−(t−nTF)/(TFMe), A= Ã cos
Φ

2
. (2.13)

We call this the stroboscopic approximation since, by averaging over the vertical
dynamics, we eliminate consideration of the drop’s vertical motion. The drop motion is
thus effectively ‘strobed’ at the bouncing frequency.

Substituting (2.13) into (2.1) yields a delay-differential equation of motion for the
drop, which is quite difficult to study analytically. We thus approximate the sum in
(2.13) by the integral:

h(x, t)= ACf

TF

∫ t

−∞
J0(kF|x− xp(s)|)e−(t−s)/(TFMe) ds, (2.14)

where Cf = 1/Me

(
e1/Me − 1

)
. This approximation is valid provided the time scale of

horizontal motion, TH = λF/|ẋp|, is much greater than the time scale TF of vertical
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motion, that is, TF � TH , as is the case for walkers. The resonant walker is thus
approximated as a continuous moving source of standing waves, and is viewed as
sweeping across the fluid interface. We make the additional approximation that Cf = 1,
since walkers typically arise when Me� 1.

Substituting (2.14) into (2.1), we obtain an integro-differential equation of motion:

mẍp + Dẋp = F

TF

∫ t

−∞

J1(kF|xp(t)− xp(s)|)
|xp(t)− xp(s)| (xp(t)− xp(s))e−(t−s)/(TFMe) ds, (2.15)

where F = mgAkF. Note that the equation of motion at time t depends on the drop’s
entire trajectory prior to that time, on its path memory as stored in the wave field.
Nevertheless, the dominant contribution of the integral comes from its recent past,
specifically t − s ∼ O(TFMe). The drop is thus influenced by more of its history as
stored in its wave field h(x, t) as its path-memory Me increases. The term on the
right-hand side of (2.15) is thus referred to alternatively as the wave force or memory
force.

The trajectory equation (2.15) is markedly different from that developed by Protière
et al. (2006), (1.1), which assumes that h(x, t) = A cos(kF(x − xp(t))). By using
VF = (ω/2)/kF and ẋp(t)TF ≈ xp(t) − xp(t − TF) for TF � 1, one can obtain from
(1.1) the delay-differential equation

mẍp + Dẋp = Fb sin
(
kF(xp(t)− xp(t − TF))

)
. (2.16)

Unlike (2.15), which incorporates the drop’s entire history, the model (2.16) only
includes the influence of a single prior impact. It can thus be valid only in the
short-path-memory limit for walkers just beyond the walking threshold Me & Me(γW),
and is incapable of capturing the drop dynamics at large Me.

The variables appearing in (2.15) are listed in table 1. Note that the model has
no free parameters: formulae for D and F are derived by Moláček & Bush (2013b),
and Td and γF can be determined numerically (Kumar 1996; Moláček & Bush 2013b).
We proceed by demonstrating that the trajectory equation (2.15) captures certain key
aspects of the walker dynamics.

3. Bouncing to walking
Note that xp ≡ constant is a solution to (2.15) that represents a stationary bouncing

state. In this section, we will study the stability of this bouncing state, and demonstrate
that increasing Me causes it to destabilize into a walking state, in which the drop
moves along a straight line at constant horizontal velocity.

We first non-dimensionalize (2.15). We choose λF and TFMe as our natural
length and time scales, respectively, and so non-dimensionalize via x′ = kFx and
t′ = t/(TFMe). Substituting into (2.15) and dropping primes, we deduce the non-
dimensional equation of motion:

κ ẍp + ẋp = β
∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)| (xp(t)− xp(s))e−(t−s) ds, (3.1)

where κ = m/DTFMe and β = FkFTFM2
e/D represent, respectively, the non-dimensional

mass and memory force coefficient.
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Dimensional variables Definition

xp drop position
m drop mass
D drag coefficient
g gravitational acceleration
H (x, t) interface deflection
TF Faraday period
Ã amplitude of single surface wave
kF Faraday wavenumber
Td decay time of waves without forcing
γ forcing acceleration
γF Faraday instability threshold
F = mgAkF memory force coefficient

Non-dimensional variables

Me = Td

TF (1− γ /γF)
memory

κ = m

DTFMe
non-dimensional mass

β = FkFTFM2
e

D
non-dimensional memory force coefficient

TABLE 1. The variables appearing in the trajectory equations (2.15) and (3.1).

We now examine the stability of the bouncing solution xp ≡ constant. By linearizing
(3.1) around this solution, xp = constant+ δx, we deduce

κδẍ+ δẋ= β
2

∫ t

−∞
[δx(t)− δx(s)]e−(t−s) ds, (3.2)

where we have used the fact that J′1(0) = 1/2. This equation can be expressed as a
system of ordinary differential equations by introducing the variable

δX(t)=
∫ t

−∞
δx(s)e−(t−s) ds. (3.3)

Solutions to (3.2) thus form a subset of solutions to the system of equations

κ ẍ+ ẋ= β
2
(x− X), Ẋ = x− X . (3.4)

Since the x and y directions are uncoupled in this equation, we can simply consider
the x direction, the calculation for the y direction being identical. Letting ẋ = u, we
obtain the system

d
dt

x
u
X

=


0 1 0
β

2κ
−1
κ
− β

2κ
1 0 −1


x

u
X

 . (3.5)

The characteristic polynomial p(s) of this matrix is

p(s)=−s

[
s2 +

(
1+ 1

κ

)
s+ 1

κ

(
1− β

2

)]
. (3.6)
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The s = 0 solution simply indicates that the bouncing state is invariant under
translation, so we neglect it. Since κ > 0, the stability of the bouncing state is
controlled by the constant term in p(s). Specifically, the bouncing state is stable
for β < 2 and unstable for β > 2. In terms of the dimensional variables, the bouncing
state is stable for forcing accelerations γ < γW , where

γW = γF

1−
√

FkFT2
d

2DTF

 (3.7)

defines the walking threshold. Note that γW increases with the drop drag coefficient D
but decreases with the memory force coefficient F. Note also that the memory force
increases with γ , as indicated by the definition of the memory parameter Me (2.5). The
bouncing state is thus stabilized by the drag force −Dẋp (which opposes the drop’s
motion) and destabilized by the memory force. Once the latter is sufficiently large to
overcome the former, the bouncing solution is destabilized, and the drop begins to
walk. As we will see in the next section, for γ & γW the drop begins to walk at a
constant velocity.

3.1. Stuart–Landau equation for the walking velocity

The experiments of Protière et al. (2006) demonstrate that, in a parameter regime
delineated by Moláček & Bush (2013b), there is a supercritical pitchfork bifurcation
at γ = γW (corresponding to β = 2), where the bouncing state destabilizes into
straight-line walking. We proceed by demonstrating that this behaviour is captured
by our integro-differential equation of motion, by analysing the drop motion near the
bifurcation. Assume that γ is slightly above the walking threshold, so β = 2+ αε2 for
0 < ε� 1 and α > 0. Near the bifurcation, we can write an asymptotic expansion for
xp(t):

xp(t)= 1
ε
a(T)+ ε3x1(t,T)+ O(ε5), (3.8)

where T = ε2t is the slow time scale. In what follows, we use the notation
ḟ = ∂f /∂t, f ′ = ∂f /∂T . We substitute this expansion into the non-dimensional equation
of motion (3.1) and extract the leading-order terms. Due to the exponential term,
the dominant contribution in the integral comes from the region t − s = O(1).
Note that

xp(t)− xp(s)= εa′(T)(t − s)+ ε3(− 1
2a
′′(T)(t − s)2 + x1(t,T)− x1(s, S))+ O(ε5),

(3.9)

where S= ε2s, which gives

|xp(t)− xp(s)|2 = ε2|a′(T)|2(t − s)2 + ε4
[−(a′(T) · a′′(T))(t − s)3

+ 2(t − s)a′(T) · (x1(t,T)− x1(s, S))
]+ O(ε6). (3.10)

Therefore

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)| =

1
2
− ε2

16
|a′(T)|2(t − s)2 + O(ε4), (3.11)
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where we use the fact that J(3)1 (0) = −3/8. The leading-order terms in the integral are
thus∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

(
xp(t)− xp(s)

)
e−(t−s) ds

= ε
2

∫ t

−∞
a′(T)(t − s)e−(t−s) ds+ ε

3

2

∫ t

−∞

[
−1

2
a′′(T)(t − s)2 − 1

8
a′(T)|a′(T)|2(t − s)3

+ (x1(t,T)− x1(s, S))

]
e−(t−s) ds+ O(ε5). (3.12)

By changing variables t − s = z, we can evaluate some of these integrals. Then using
β = 2+ αε2, the equation of motion (3.1) reduces, at leading order, to

κ ẍ1 + ẋ1 − x1 +
∫ t

−∞
x1(s, S)e−(t−s) ds= α

2
a′ − (1+ κ)a′′ − 3

4
a′|a′|2. (3.13)

Introducing the variable X1 =
∫ t
−∞ x1(s, S)e−(t−s) ds, (3.13) can be written in the form

∂

∂t
(κ ẋ1 + x1 − X1)= α2 a

′ − (1+ κ)a′′ − 3
4
a′|a′|2. (3.14)

In order for the expansion (3.8) to be consistent, x1 should be a bounded function of
t, which implies that the right side of (3.14) must vanish. This yields an evolution
equation for the leading-order velocity a′:

a′′ = 1
2 (1+ κ)a

′
(
α − 3

2
|a′|2

)
. (3.15)

This is a Stuart–Landau equation (Stuart 1958) for the velocity a′. We write
a′ = u(T)(cos θ(T), sin θ(T)), where u(T) is the speed of the drop and θ(T) determines
its direction, so that (3.15) becomes

u′ = 1
2 (1+ κ)u

(
α − 3

2
u2

)
, θ ′ = 0. (3.16)

We thus confirm that the speed u undergoes a supercritical pitchfork bifurcation when
β = 2. For β < 2, only the bouncing state u = 0 is stable; for β & 2, the walking
solution is stable and has speed u ≈ √2α/3. The equation θ ′ = 0 implies that, as
expected, the drop walks in a straight line in an arbitrary direction: since the wave
field produced at each bounce is rotationally symmetric, there is no preferred direction
of motion at the onset of instability. Therefore, in the experiment, the initial direction
of motion is presumably governed by random or imposed perturbations.

4. Straight-line walking
The drop’s bouncing state becomes unstable for γ > γW , beyond which it walks in

a straight line at constant speed. We proceed by deriving a formula for the walking
speed of the resonant walker, and showing that the resonant walking state is stable for
all γW < γ < γF.
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FIGURE 2. (Colour online) Plot of the walking speed u (in mm s−1) as a function of
the non-dimensional forcing acceleration γ /g. The dots represent experimental data from
Moláček & Bush (2013b), and the curves are obtained from our model prediction (4.3) for
a resonant walker using (a) ν = 20 cS, f = 80 Hz, ρ = 949 kg m−3, σ = 20.6 × 10−3 N m−1,
γF = 4.3g, Td = 1/54.9 s, R = 0.40 mm, and (b) ν = 50 cS, f = 50 Hz, ρ = 960 kg m−3,
σ = 20.8 × 10−3 N m−1, γF = 4.23g, Td = 1/57.9 s, R = 0.39 mm. The single free parameter
in our stroboscopic model is the phase of impact, chosen here to be (a) sinΦ = 0.3 and (b)
sinΦ = 0.35. Characteristic error bars are shown.

4.1. Walking speed
To find a formula for the walking speed u, we substitute the solution xp = (ut, 0) into
(3.1):

u= β
∫ ∞

0
J1(uz)e−z dz. (4.1)

The integral can be evaluated exactly, yielding

u= β
u

(
1− 1√

1+ u2

)
⇒ u= 1√

2

(
−1+ 2β −√1+ 4β

)1/2
. (4.2)

Note that this solution is real-valued only for β > 2, in accordance with the stability
analysis of the bouncing state presented in § 3. In terms of dimensional variables, the
walking speed u has the form

u= 1
kFTd

(
1− γ

γF

)1
4

−1+
√

1+ 8
(
γF − γW

γF − γ
)2
2

− 1


1/2

. (4.3)

Figure 2 shows a comparison between the experimental dependence of the walking
speed u on the forcing acceleration γ , as reported by Moláček & Bush (2013b),
and that predicted by (4.3). The equation for the resonant walking speed adequately
describes the experimental data, provided that the impact phase Φ is judiciously
chosen. Note that the impact phases chosen in figure 2 are roughly consistent with
those reported in Moláček & Bush (2013b); however, they are also known to depend
weakly on γ (Moláček & Bush 2013b).

It follows from (4.3) that u is a monotonically increasing function of γ . As γ
increases, so does the propulsive memory force and the drop speed. Moreover, one
can show that in the infinite memory limit Me→∞ (or γ → γF), the walking speed
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remains bounded, and assumes the value

lim
γ→γF

u=
√

2
kFTd

(
1− γW

γF

)
=
√

F

DkFTF
=
√

mgA

DTF
. (4.4)

In reality, the amplitude A depends on γ through the phase Φ, so u does not
necessarily increase with γ . Moreover, Moláček & Bush (2013b) demonstrate that
the walking speed curves such as those in figure 2 may have discontinuities resulting
from the drop switching between different walking modes as γ increases, an effect
that could not be captured with our resonant walker model.

4.2. Wave field
Plots of the strobed wave field (2.14) generated by a walker moving according to
xp = (ut, 0) are shown in figure 3 for low, medium, and high memory. The plots
are shown in the drop’s reference frame, with the drop at the origin and moving to
the right. Note that, as the memory increases, the interference effects of the standing
waves become more pronounced. The computed wave fields are qualitatively similar
to those reported by Eddi et al. (2011). Profiles of the wave fields along the drop’s
direction of motion are also shown. Note that the drop is effectively surfing on the
crest of its guiding wave. If γ < γW , the drop bounces in place (u = 0) on the
crest of the wave. As the memory increases, the drop slides further down the wave
in the direction of increasing gradient, and so moves faster. The horizontal force
−mg∇h(xp, t) imparted by the inclined surface precisely balances the drag −Dẋp,
allowing the drop to move at a constant speed.

5. Stability analysis
Steady rectilinear walking is observed in the laboratory for a substantial range of

parameter space (Protière et al. 2006; Moláček & Bush 2013b), indicating that the
walking state is relatively robust. We proceed by showing that the walking solution
xp = (ut, 0) is stable to perturbations in the direction of motion, and neutrally stable to
transverse perturbations. To this end, we consider the dimensionless equation

κ ẍp + ẋp = β
∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)| (xp(t)− xp(s))e−(t−s) ds+ εδ(t), (5.1)

where δ(t)= (δx(t), δy(t)) is the Dirac delta function and 0< ε� 1. The delta function
represents a small perturbation to the drop at time t = 0, the response to which we
examine in what follows.

We write the drop trajectory as xp(t) = x0(t) + εx1(t)H(t) where x0(t) = (ut, 0) is
the walking solution defined by (4.2) and x1(t) = (x1(t), y1(t)) is the perturbation. We
impose the conditions x1(0) = (0, 0) and ẋ1(0) = (1/κ, 1/κ) to ensure that xp is a
solution of (5.1). We substitute this solution into (5.1) and retain only the O(ε) terms:

κ ẍ1 + ẋ1 = β
∫ t

−∞
J′1(u(t − s))(x1(t)− x1(s)H(s))e−(t−s) ds, (5.2a)

κ ÿ1 + ẏ1 = β
∫ t

−∞

J1(u(t − s))

u(t − s)
(y1(t)− y1(s)H(s))e−(t−s) ds. (5.2b)

Note that these equations can be written in the form

κ ẍ1 + ẋ1 = β
[

x1

∫ ∞
0

J′1(uz)e−z dz− x1 ∗
(
J′1(ut)e−t

)]
, (5.3a)
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FIGURE 3. Wave fields generated by (a) a stationary bouncer and (b–d) walkers for,
respectively, (a) very low (γ = 3.0g), (b) low (γ = 3.4g), (c) medium (γ = 3.8g), and
(d) high (γ = 4.2g) path-memory. The plots are generated using ν = 20 cS, f = 80 Hz,
ρ = 949 kg m−3, σ = 20.6 × 10−3 N m−1, Td = 1/54.9 s, R = 0.40 mm, and sinΦ = 0.3.
The walking and Faraday thresholds are γW = 3.12g and γF = 4.3g, respectively. The
wave amplitude is given in µm. Upper figures: plot of the strobed wave field h(x, t) (2.14)
accompanying the drop. The drop is located at the origin and moves to the right according
to xp = (ut, 0), where u is determined by (4.3). Lower figures: wave profiles h(x, t) along the
direction of motion of the walker. As the memory increases, the walker moves away from the
crest towards a region with higher slope, thus moving faster.
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κ ÿ1 + ẏ1 = β
[

y1

∫ ∞
0

J1(uz)

uz
e−z dz− y1 ∗

(
J1(ut)

ut
e−t

)]
, (5.3b)

where f ∗ g denotes the convolution of the functions f and g. This form of the
linearized equations of motion makes them particularly amenable to stability analysis,
since we can now take the Laplace transform of both sides of the equations. Doing
so yields algebraic equations for X(s) =L [x1(t)] and Y(s) =L [y1(t)], which can be
readily solved. The poles of X(s) and Y(s) are the eigenvalues of their respective
linear problems (5.3a) and (5.3b). If the poles lie in the left- or right-half of the
complex plane, the walking solution x(t) = (ut, 0) is respectively stable or unstable to
perturbations in the corresponding direction.

5.1. Stability to perturbations in the direction of motion
We first consider the equation for x1, the perturbation along the walking direction.
We take the Laplace transform of the equation and use the facts that x1(0) = 0 and
ẋ1(0)= 1/κ , in order to deduce an equation for X(s):

(κs2 + s)X(s)− 1= βX(s)
∫ ∞

0
J′1(uz)e−z dz− βL

[
J′1(ut)e−t

]
X(s). (5.4)

We now use the facts that

∫ ∞
0

J′1(uz)e−z dz= 1

2
√

u2 + 1

1− u2(
1+√u2 + 1

)2

= 1
β

(5.5a)

and

L
[
J′1(ut)e−t

]= 1

2
√

u2 + (s+ 1)2

1− u2(
s+ 1+

√
u2 + (s+ 1)2

)2

 , (5.5b)

in order to obtain

X(s)= 1

κs2 + s− 1+ β

2
√

u2 + (s+ 1)2

1− u2(
s+ 1+

√
u2 + (s+ 1)2

)2


. (5.6)

Note that the appropriate branch for the square root is defined by
√

u2 + (s+ 1)2 > 0
for s = 0, with branch cuts s = −1 ± iξ for ξ > u. For simplicity, we write X(s) in
terms of the variable s̃= s+ 1. After some algebra, we can rewrite (5.6) as

X(s)=
√

u2 + s̃2
(

s̃+√u2 + s̃2
)

κ(s̃− 1)2(u2 + s̃2)+ β s̃+ (s̃− 2)(u2 + s̃2)+ [s̃(s̃− 2)+ κ s̃(s̃− 1)2
]√

u2 + s̃2
.

(5.7)

The poles of X(s) are the zeros of its denominator, which solve the equation

[s̃(s̃− 2)+ κ s̃(s̃− 1)2]
√

u2 + s̃2 = (2− s̃)(s̃2 + u2)− β s̃− κ(s̃− 1)2(s̃2 + u2). (5.8)
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FIGURE 4. (Colour online) Plot of the real part of the (non-zero) poles of L [x1(t)] = X(s)
as a function of β, for (a) κ = 1, (b) κ = 1.5 and (c) κ = 5, respectively. X(s) is the Laplace
transform of the perturbation x1, β the non-dimensional memory force coefficient, and κ the
non-dimensional mass of the drop (see table 1). The three plots are representative of the
ranges 0 6 κ . 1.3, 1.3 . κ < 2, and κ > 2, respectively. Note that merging of the curves
indicates the existence of two complex conjugate poles with the same real part.

Squaring both sides of this equation and some further algebra yields

[u2(s̃− 2+ κ(s̃− 1)2)
2 + 2β s̃(s̃− 2+ κ(s̃− 1)2)](s̃2 + u2)=−β2s̃2. (5.9)

Note that the poles of X(s) are a subset of the solutions to this equation, since
squaring both sides may introduce spurious solutions; that is, some solutions of (5.9)
may not solve (5.8). Therefore, the poles of X(s) are a subset of the roots of the
sixth-degree polynomial px(s̃)=

∑6
k=0cks̃k, with coefficients

c0 = 4u4

(
1− κ + κ

2

4

)
, c1 =−u2

[
4β + 4u2 + κ(−2β − 10u2 + 4κu2)

]
,(5.10a)

c2 = β2 + 4u2 + 2βu2 + u4 + κ (−4u2 − 4βu2 − 8u4 + κu2 + 6κu4
)
, (5.10b)

c3 =−
[
4β + 4u2 + κ (−2β − 10u2 − 2βu2 − 2u4 + 4κu2 + 4κu4

)]
, (5.10c)

c4 = u2 + 2β + κ (−4β − 8u2 + 6κu2 + κu4
)
, (5.10d)

c5 = κ(2β + 2u2 − 4κu2), c6 = κ2u2. (5.10e)

It can be verified that px(1) = 0, so X(s) has a pole at the origin s = 0. This reflects
the fact that the equation of motion (3.1) is invariant under translation in the x
direction; that is, if xp(t) is a solution to (3.1), so is xp(t) + (x̃, 0), where x̃ is
a constant. Since L [x̃] = x̃/s, the translational invariance of the solution implies
that X(s) has a pole at s = 0 (or s̃ = 1). Therefore, the non-trivial poles of X(s)
are a subset of the roots of the fifth-degree polynomial qx(s̃) =

∑5
k=0dks̃k, where

px(s̃)= (s̃− 1)qx(s̃). The coefficients of qx(s̃) are related to the coefficients of px(s̃) by
the formula di =−

∑i
k=0ck.

We find the roots of qx(s̃) numerically with MATLAB for a range of parameters
β and κ , and only select the roots that are actually poles of X(s), that is, solutions
of (5.8). The real parts of the roots are plotted in figure 4 for a range of parameters
κ and β > 2. Note that the poles of X(s) always have negative real part, indicating
that the walking solution xp(t) = (ut, 0) is stable to perturbations along the direction
of motion. That is, if the drop is infinitesimally perturbed along its walking direction,
it will converge exponentially quickly to a solution of the form xp(t) = (ut + εx̃, 0). It
will thus continue to walk along the same line at the same constant speed.
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5.2. Stability to lateral perturbations
We now show that the walking drop with trajectory xp(t)= (ut, 0) is neutrally stable to
perturbations in the y direction, that is, perpendicular to its direction of motion. Taking
the Laplace transform of the y1-equation (5.3b) and using the fact that y1(0) = 0 and
ẏ1(0)= 1/κ yields an algebraic equation for Y(s)=L [y1(t)]:

(κs2 + s)Y(s)− 1= βY(s)
∫ ∞

0

J1(uz)

uz
e−z dz− βL

[
J1(ut)

ut
e−t

]
Y(s). (5.11)

We now use the facts that∫ ∞
0

J1(uz)

uz
e−z dz= 1

u2

(
−1+

√
1+ u2

)
= 1
β

√
1+ u2, (5.12a)

and

L

[
J1(ut)

ut
e−t

]
= 1

u

−s+ 1
u
+
√

1+
(

s+ 1
u

)2
 , (5.12b)

to deduce the solution

Y(s)= 1

κs2 + s−√1+ u2 + β

u2

(
−(s+ 1)+

√
u2 + (s+ 1)2

) , (5.13)

where the square root has the same meaning as before. Using (4.2) for the walking
speed u allows us to rewrite Y(s) as

Y(s)= −1+ 2β − β∗
κs2 (−1+ 2β − β∗)− s (1+ β∗)+ β (1− β∗)+ β

√
(−1+ β∗)2 + 4s(s+ 2)

,

(5.14)

where β∗ =√1+ 4β. As previously, the poles of Y(s) are the zeros of its denominator,
which are solutions to

β

√
(−1+ β∗)2 + 4s(s+ 2)= β (β∗ − 1)+ s (1+ β∗)− κs2 (−1+ 2β − β∗) . (5.15)

Squaring both sides of this equation and subsequent algebra yields

s2(1+ 2β + β∗)= κ2s4 (−1+ 2β − β∗)− 2κs3 (1+ β∗)− 2κs2β (−1+ β∗) . (5.16)

Therefore, the poles of Y(s) are a subset of the roots of the polynomial pY(s) =
s2(c0 + c1s+ c2s2), with coefficients

c0 =−
[
2κβ (−1+ β∗)+ 1+ 2β + β∗] , (5.17a)

c1 =−2κ (1+ β∗) , c2 = κ2 (−1+ 2β − β∗) . (5.17b)

Note that pY(s) has a double zero at the origin s = 0, as well as the two roots of
c0+c1s+c2s2. However, one can show numerically that these roots do not solve (5.15),
and hence they are not poles of Y(s). As a result, Y(s) has only a double pole at the
origin, so the drop is neutrally stable with respect to perturbations perpendicular to the
direction of motion.

Since the equation of motion (3.1) is invariant under translation in the y direction,
we expect a pole at the origin. The double pole, which arises from the rotational
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invariance of the problem, indicates that the perturbation y1 grows linearly in time,
rather than exponentially. Physically, this indicates that the drop can change direction
when perturbed perpendicular to its walking direction. Note that the waves emitted by
the drop have radial symmetry, and that the drop is effectively surfing on the central
crest of its pilot wave field (figure 3). Hence, there is no force to stabilize the drop to
lateral perturbations, so its direction of motion can be readily altered. However, once
so perturbed, it will simply walk at a constant speed in the new direction.

6. Discussion
We have developed and analysed an integro-differential trajectory equation to

describe the horizontal motion of a droplet walking in resonance on a vibrating
fluid bath. The equation was developed by approximating the resonant walker as a
continuous moving source of standing waves. The resulting theoretical model makes
predictions that are consistent with many of the experimental results reported by
Protière et al. (2006) and Moláček & Bush (2013b). Specifically, it predicts that the
bouncing state becomes unstable at a critical value of the memory parameter Me

consistent with that observed experimentally. By deriving a Stuart–Landau equation
for the motion of the drop near this critical value, we have shown that the bouncing
state destabilizes into straight-line walking xp = (ut, 0) via a supercritical pitchfork
bifurcation. The trajectory equation also yields an analytical expression (4.3) for the
dependence of the walking speed u on the forcing acceleration γ that compares
favourably with the experimental results reported by Moláček & Bush (2013b).

We have also analysed the stability of the resonant walking state. By demonstrating
that the walker is stable to perturbations in the direction of motion, we have provided
a new rationale for the robustness of the resonant walking state. By demonstrating
that the walker is neutrally stable to perturbations perpendicular to the direction of
motion, we provide evidence that the dynamics may be chaotic in more complicated
geometries. In the presence of boundaries, the walkers are easily diverted; indeed,
steady rectilinear walking is rarely observed in confined geometries (Harris et al.
2013), as the wave field is complicated by reflections from the boundaries. The drop
trajectory is then extremely sensitive to its initial conditions, which may result in
chaotic dynamics. Rationalizing how the coherent statistical behaviour (Couder & Fort
2006; Harris et al. 2013) emerges from the underlying complex nonlinear dynamics is
a subject of ongoing research.

It is worth stressing that the stroboscopic approximation assumes a priori that
the droplet and accompanying wave are in a state of perfect resonance. While this
resonance assumption greatly simplifies the mathematical analysis, the model does not
consider the detailed coupling between the horizontal and vertical drop motion, an
important aspect of the dynamics that one expects to have significant bearing on the
stability characteristics of the walkers. In particular, the model fails to capture the
experimental observations that the walking state is sometimes unstable for sufficiently
small or large drops (Moláček & Bush 2013b; Wind-Willassen et al. 2013), that large
drops can undergo a subcritical transition to walking (Protière et al. 2006), and that
the walking speed of some drops is a non-monotonic or even discontinuous function of
the forcing acceleration, owing to the switching between two resonant bouncing modes
(Moláček & Bush 2013b).

Another limitation of the trajectory equation (3.1) is that it only applies in free
space; that is, the fluid bath must be large compared to the damping length of the
Faraday and transient wave fields, so that the boundaries and reflected waves can be
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safely neglected. Specifically, the Bessel function approximation (2.8) for the standing
wave field generated by a single bounce will no longer be valid if the drop is near
a submerged barrier or the container boundary. As many of the interesting quantum
analogues such as tunnelling (Eddi et al. 2009), diffraction and interference (Couder &
Fort 2006) occur in the presence of submerged barriers, the incorporation of boundary
effects into the pilot-wave model developed herein will be the subject of future work.

While analysing the stability of resonant straight-line walking is informative, the real
value of the trajectory equation will be in elucidating certain aspects of the walkers’
quantum-like behaviour. In the future, we will show that our trajectory equation can
be simply extended to include a Coriolis force, allowing us to elucidate the orbital
quantization reported by Fort et al. (2010) and to predict qualitatively new phenomena
(Harris & Bush 2013; Oza et al. 2013). Our model can incorporate central force fields
in a similar fashion, thus allowing us to analyse the hydrodynamic analogue of the
quantum harmonic oscillator, which is currently being explored in the laboratory of
Yves Couder (Perrard et al. 2013).
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WIND-WILLASSEN, Ø., MOLÁČEK, J., HARRIS, D. M. & BUSH, J. W. M. 2013 Exotic states of

bouncing and walking droplets. Phys. Fluids 25, 082002.


	A trajectory equation for walking droplets: hydrodynamic pilot-wave theory
	Introduction
	Integro-differential equation of motion
	Bouncing to walking
	Stuart--Landau equation for the walking velocity

	Straight-line walking
	Walking speed
	Wave field

	Stability analysis
	Stability to perturbations in the direction of motion
	Stability to lateral perturbations

	Discussion
	Acknowledgements
	References


	ikona: 
	552: 
	553: 
	554: 
	555: 
	556: 
	557: 
	558: 
	560: 
	561: 
	562: 
	563: 
	566: 
	568: 
	569: 

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 

	TooltipField: 


