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The elastochrone: the descent time of a sphere
on a flexible beam

BY JEFFREY M. ARISTOFF
1, CHRISTOPHE CLANET

2

AND JOHN W. M. BUSH
1,*

1Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2Department of Mechanics, École Polytechnique, 91128 Palaiseau, France

We present the results of a combined experimental and theoretical investigation of the
motion of a sphere on an inclined flexible beam. A theoretical model based on Euler–
Bernoulli beam theory is developed to describe the dynamics, and in the limit where the
beam reacts instantaneously to the loading, we obtain exact solutions for the load
trajectory and descent time. For the case of an initially horizontal beam, we calculate the
period of the resulting oscillations. Theoretical predictions compare favourably with our
experimental observations in this quasi-static regime. The time taken for descent along
an elastic beam, the elastochrone, is shown to exceed the classical brachistochrone, the
shortest time between two points in a gravitational field.

Keywords: moving load; flexible beam; brachistochrone
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1. Introduction

In the early seventeenth century, Galileo Galilei built an inclined ramp on which
he rolled spheres of different size and density (Galilei 1638). From his
measurements, he deduced a relationship between the sphere’s position and
the elapsed time, and so inferred the apparent constancy of the Earth’s
gravitational acceleration. Galileo also argued that the path of quickest descent
between two points would be an arc of a circle, but as demonstrated by Johann
and Jakob Bernoulli, Leibniz and arguably Newton (Anon 1697), such a path
was found instead to be an inverted cycloid, the travel time along which
corresponds to the brachistochrone (Boyer & Merzbach 1991). We here consider
a variation of Galileo’s study in which the rigid ramp is replaced by a flexible
beam that can bend under its own weight and that of the rolling sphere.

A fundamental understanding of the dynamic behaviour of flexible beams
subjected to moving loads is central to the design of many engineering structures,
including bridges and railways. Aspects of this problem have been studied
extensively, beginning with Stokes (1849), Willis (1849) and Zimmermann
(1896), who considered a beam with negligible mass traversed by a single load
moving at constant speed. Subsequently, Krylov (1905), Timoshenko (1908) and
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(a)

(b)

Figure 1. (a) Photograph of a simply supported metre-long beam with mass MZ0.33 kg, stiffness
EIZ4.03 kg m3 sK2 and initial inclination qZ10.08. (b) Overlaid images taken at 0.1 s intervals
following the release of a 2.5-in. diameter steel sphere weighing mZ1.0 kg onto the beam.
MZm/MZ3.14, KZMgL2=EIZ0:744.
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Lowan (1935) investigated the limit where the load mass is negligible relative to
that of the beam. Steuding (1934), Schallenkamp (1937) and Bolotin (1961) and
others included both the beam and load mass in their analysis of loads moving at
constant speed. The generalization to load motion at variable but deflection-
independent acceleration has received recent attention, and is discussed for
example by Lee (1995) and Michaltsos (2002).

One-dimensional elements resistant to tension but not to bending, such as
strings, cables, chains and ropes, are frequently used in modern structures.
Vibration studies of these elements subjected to moving loads began with Smith
(1964), who studied the motion of a mass moving at constant speed along a
stretched string. Flaherty (1968), Sagartz & Forrestal (1975) and Rodeman et al.
(1976) considered variable-speed load motion, and Derendyayev & Soldatov
(1997) and Blinov (2008) included the load’s inertia. For a comprehensive review
of the dynamic response of solid structures under moving loads, see for example
Fryba (1972), or from a historical viewpoint, see Timoshenko (1953).

Civilian and military operations on floating ice are common in Arctic regions
and have motivated a number of scientific studies. Kerr (1976) surveyed early
research on the response of floating ice to static loads. Nevel (1970) considered
the local stresses generated by a load moving at constant speed, and Davys et al.
(1985) analysed the far-field wave patterns. Considerable effort has been made to
predict the critical load speed, above which flexural-gravity waves can propagate
freely, and below which no such waves are generated (e.g. Hosking et al. 1988;
Strathdee et al. 1991). For a review of the modern theory of moving loads on ice
plates, see Squire et al. (1996) and references therein.

In all previous studies of beams, the load speed or acceleration is prescribed
and independent of the resulting deflection, but in general this need not be the
case. Consider the motion of a solid steel sphere with mass m along a simply
supported flexible beam with length L, mass M, Young’s modulus E, area
moment of inertia I, stiffness EI and initial beam inclination q, as depicted in
figure 1. Provided the beam is inextensible, the system may be characterized by
three dimensionless groups: the load-to-beammass ratioMZm/M; the initial beam
inclination q; and the torque ratio KZMgL2=EI , which represents the tendency of
the beam to bend under its own weight (g is the gravitational acceleration).
Proc. R. Soc. A (2009)
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Figure 2. Regime diagram depicting the beam-and-mass dynamics and indicating the scope of the
present study (regions II, III and IV).
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This classification allows us to identify four regions in the phase space (M, K)
as shown in figure 2. Region I (K/1, M/1) corresponds to Galileo’s rigid ramp
and a uniformly accelerated sphere. In region II (K[1,M/1) the beam
bends under its own weight, independent of the sphere dynamics. In region III
(K/1,M[1), the beam does not deform under its own weight, but rather under
the weight of the sphere, and the beam shape is thereby coupled to the sphere
dynamics. In region IV (K[1, M[1), the beam bends under its own weight
and that of the sphere, and one expects that the beam’s inertia may generate waves
as the sphere rolls. In the present study, we consider the system dynamics in
regions II, III and IV, where the sphere acceleration is deflection dependent.

Further insight into the beam-and-mass dynamics may be obtained by
considering the characteristic length scales and time scales associated with the
load motion. Along an initially horizontal beam, the characteristic deflection
length scale e is found by equating the bending energy EI ðe=L2Þ2L to the
gravitational potential energy e mCMð Þg, yielding

ew
ðmCMÞgL3

EI
; ð1:1Þ

that corresponds to the maximum static deflection. The characteristic load speed
is thus Uw

ffiffiffiffiffi
eg

p
, and the time scale associated with the load motion is therefore

T1wL=Uw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

ðmCMÞg2L

s
: ð1:2Þ

Along a rigid beam with inclination q, vertical motion occurs over a length scale
L sin q and a time scale

T2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

g sin q

s
:

For T1/T2 or equivalently K(1CM)[sin q, the beam deflection is principally
responsible for load motion, while for T1[T2, the initial inclination provides
the impetus.
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


J. M. Aristoff et al.2296

 on 28 May 2009rspa.royalsocietypublishing.orgDownloaded from 
A third time scale, the reaction time Tb of the beam to an applied load, may be
estimated by comparing the kinetic energy of the beam Mðe=TbÞ2 to the bending
energy. Doing so yields

Tbw

ffiffiffiffiffiffiffiffiffiffi
ML3

EI

r
: ð1:3Þ

Provided the relevant time scale of load motion min(T1, T2)[Tb, the beam
adapts instantaneously to the loading. We shall primarily be interested in this
quasi-static limit arising when

K/csc q; for T1[T2;

K/ð1CMÞK1=2; for T1/T2:

(
ð1:4Þ

Both the load’s inertia and weight contribute to the beam deflection, the ratio
of which is prescribed by the Froude number FZU 2=ðgR c cos qÞ where
RcZL2=e is the characteristic radius of curvature of the beam. One may thus
neglect the load’s inertia provided F/1, or equivalently

e

L
/cot q; for T1[T2;

e

L

 !
/

ffiffiffiffiffiffiffiffiffiffi
cos q

p
; for T1/T2:

8>>>><
>>>>:

ð1:5Þ

Note that F is not an independent parameter, but instead depends explicitly on
K, M and q through (1.1).

In §2 we describe our experimental technique and report our observations. In
§3 we develop a theoretical model for the beam-and-mass dynamics, and deduce
the travel time along a flexible ramp, the elastochrone. Particular attention is
given to the quasi-static limit in which an analytical expression for the load
trajectory and descent time may be obtained. The value and limitations of our
model are discussed in §4.
2. Experiment

The beam used in our study is 0.96 m long, 5.0 cm wide, 2.5 mm thick, weighs
0.33 kg, and is constructed from an aluminium grade 6061 T6 standard rule. The
stiffness of the beam is determined by clamping it to a level surface at various
distances from its free end, and measuring the tip deflection. The data are then
compared to the deflection predicted by nonlinear beam theory, and the best-fit
value for the stiffness is found to be 4.03G0.12 kg m3 sK2, yielding
KZMgL2=EIZ0:744. For the remaining experiments, each end of the beam is
attached to a pair of ball bearings in such a way that the beam is free to rotate.
At the upper end of the beam, the bearings are clamped to a support, and at the
lower end, the bearings rest on a level surface. Fixed- and hinged-end boundary
conditions are thus obtained. Each support weighs 0.011 kg and has a rotational
inertia of 3.38!10K6 kg m2. A digital level, accurate to G0.058, is used to
measure the initial inclination of the beam.
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/
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Figure 3. Image sequences showing the first 7.2 s following the release of steel spheres of different
masses onto a metre-long initially horizontal beam. The time between images is 0.6 s. (a) 1.5 in.
diameter sphere, MZ0.68; (b) 2.0 in. diameter sphere, MZ1.61; (c) 2.5 in. diameter sphere,
MZ3.14; (d ) 3.0 in. diameter sphere, MZ5.43.
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Nine steel spheres (density 7700 kg mK3) are used in the experiment. The
diameters of the steel spheres range from 1 to 3 in. in increments of quarter
inches, corresponding to a nearly 10-fold variation in mass, from 0.22 to 1.8 kg.
The spheres traverse the beam lengthwise, rolling along a shallow groove cut
into the beam, 0.76 mm deep and 4.6 mm wide, which prohibits the spheres from
moving laterally. While movement of the supports gives rise to friction, it may be
neglected on the grounds that the rotational and translational inertia of the
supports are negligible relative to those of the sphere and beam, respectively.

An experiment is initiated by placing the sphere at the desired starting
position. The sphere is then released from rest and its motion recorded at
200 frames sK1 using a high-speed video camera. A typical resolution of
1 pixel mmK1 in 32-bit greyscale is obtained. Backlighting provides sufficient
contrast to visualize both the beam and sphere dynamics.

A first series of experiments was performed in which each sphere was released
from one end of an initially horizontal beam. This series is presented in figure 3.
Motion occurs as a result of the unbalanced gravitational force along the tangent
to the beam that arises due to the beam bending under its own weight. A periodic
motion of the beam-and-mass system is observed: the sphere traverses the beam
back and forth, with a period of several seconds. The oscillatory motion
continues, and the change in length [ of the trajectory over a single period is
measured: D[=[Zð2:4G1:3Þ%. Thus, we conclude that dissipation due to
friction is negligible over a single period. In order to quantitatively summarize
the experimental results, we construct a space–time diagram for each
experiment. The diagram is constructed by taking a one-pixel-wide vertical
Proc. R. Soc. A (2009)
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Figure 4. Space–time diagram of the beam’s midpoint deflection for increasing load-to-beam mass
ratios, M, indicating deflection amplitude, vibration amplitude, vibration frequency and period of
sphere motion. The vertical patches correspond to the times when the sphere passes the beam’s
midpoint. KZ0.744, qZ0.
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slice of each frame, and stacking each slice horizontally. We choose a slice
through the beam’s midpoint in order to capture the maximum beam deflection,
and plot the resulting montage in figure 4 for each experiment. As the mass of the
sphere is increased, we observe several key features that we shall rationalize in
§3. First, the deflection amplitude increases. Second, the period of load motion
decreases from approximately 8 to 4 s. Third, for MO2, bending waves arise
with increasing amplitude and a frequency that decreases from approximately
6 to 4 sK1. The dependence of the deflection amplitude and vibration amplitude
on the load-to-beam mass ratio is quantified in figures 5 and 6, respectively.

A second series of experiments was performed in which each sphere was placed
at various distances from the midpoint of a beam with endpoints at equal
heights, from a position corresponding to the static equilibrium of the bent beam.
The sphere was then released, and the periodic motion of the mass and
beam again observed. In figure 7, we plot the observed period versus release
position, x0, as measured from the end of the beam. Two trends are readily
apparent from the data. First, the period of motion remains nearly constant
(within 5% of its average value) for a given mass, provided that the sphere is
released sufficiently close to the beam centre, j x0=LK0:5 j%0:25. Second, as the
release position departs farther from the beam centre, the period increases, a
dependence to be rationalized in §3.

A third series of experiments was performed in which the beam was given an
initial inclination qZ10.08, and each sphere released 2.5 cm from the upper end of
the beam. The resulting motion is shown in figure 8 for three experiments.
We observe that as the sphere’s weight is progressively increased, the deflection
Proc. R. Soc. A (2009)
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Figure 6. Dimensionless vibration amplitude versus load-to-beam mass ratio for the motion of a
sphere along an initially horizontal beam. The cross marks denote the experimentally observed
vibration amplitudes. The solid line is given by the difference between the dynamic and static
deflections, defined by (3.24) and (3.12), respectively. Characteristic error bars are shown.
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Figure 5. Dimensionless dynamic deflection amplitude versus load-to-beam mass ratio m/M for
an initially horizontal beam. The cross marks denote the experimentally observed beam
deflections. The solid curve is defined by (3.12) and the dashed curve by (3.24). A characteristic
error bar is shown.
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amplitude increases and the descent time decreases. In figure 9, we present
the descent time t as a function of sphere weight. The time t is scaled by the

descent time along a rigid beam: tGZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1CJ=ðmR2ÞÞð2l=ðg sin qÞÞ

p
, where

JZ(2/5)mR2 is the rotational inertia of the sphere, and lZLK2.5 cm the
distance travelled. We first note that descent is faster along a flexible than rigid
Proc. R. Soc. A (2009)
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Figure 7. Period of sphere motion versus release distance from the beam midpoint of an initially
horizontal beam for various load-to-beam mass ratios MZm=M : crosses, MZ5:43; up triangles,
MZ4:19; circles, MZ3:14; asterisks, MZ2:29; diamonds, MZ1:61; down triangles, MZ1:08;
pluses, MZ0:68. A characteristic error bar is shown.
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beam. Moreover, we observe that the heavier spheres descend faster, until Mz5,
beyond which the sphere may lift off the beam before reaching the opposite end.
As the load-to-beam mass ratio M approaches zero, the descent time is observed
to approach a constant, since the beam does not bend beneath the weight of the
sphere. However, since the beam bends under its own weight, the descent time is
still less than that along a rigid incline.
3. Theoretical model

We consider the motion of a rigid sphere with radius R, mass m and rotational
inertia J, which traverses a simply supported, inextensible, undamped beam with
length L[R, mass M, stiffness EI and initial inclination q. The motion takes
place in a gravitational field and is depicted in figure 10. Let x denote the
coordinate along the line adjoining the beam endpoints, and w(x, t) the beam
deflection from this line. Let s(t) denote the position of the sphere. If we assume
that the behaviour of the beam is governed by Euler–Bernoulli beam theory, the
equation for the beam displacement takes the form:

EIwxxxx C
M

L
wtt ZP; ð3:1Þ

where PZP1CP2 is the loading force per unit length (Fryba 1972), and we have
taken the small-slope limit: wx/1. The terms on the left-hand side of (3.1) arise,
respectively, from the bending and kinetic energy of the beam, and
P1ZMg cos q=L is the distributed loading due to the normal component of the
beam’s weight. Applying D’Alembert’s principle and assuming continuous
contact between the sphere and beam, the normal component of the sphere’s
weight gives rise to the loading
Proc. R. Soc. A (2009)
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Figure 8. Image sequences of steel spheres traversing a metre-long beam with initial inclination
qZ10.08. The time between images is 0.1 s. (a) 2.0 in. diameter sphere, MZ1.61; (b) 2.5 in.
diameter sphere, MZ3.14; (c) 3.0 in. diameter sphere, MZ5.43. Note that the sphere has lost
contact with the beam in the final image of sequence c.
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P2 Zm g cos qK
d2wðs; tÞ

dt2

� �
dðxKsÞ; ð3:2Þ

where d(xKs) is the delta function and the term mðd2wðs; tÞ=dt2Þ accounts for the
inertial forces. The appropriate boundary and initial conditions for (3.1) are

wð0; tÞZwðL; tÞZwxxð0; tÞZwxxðL; tÞZwtðx; 0ÞZwttðx; 0ÞZ 0: ð3:3Þ

In appendix A, we justify the use of the small-slope approximation to describe
the observed motion.

The motion of the sphere is prescribed by

m
d2s

dt2
CmwttwxdðxKsÞZFðtÞ; ð3:4Þ

where the second term accounts for the tangential acceleration imparted to the
sphere by the beam motion, and F(t) is the tangential forcing. We note that in
the engineering literature, F(t) is typically prescribed so as to describe the
Proc. R. Soc. A (2009)
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observed descent times. The solid curve is determined by numerically integrating (3.16). For
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Figure 10. Schematic of a sphere with mass m traversing a simply supported inclined beam
having length L, mass M, stiffness EI and initial inclination q. A particular beam deflection w(x, t)
is shown.
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motion of a vehicle that is travelling at either constant speed or acceleration
(Lee 1995; Michaltsos 2002). Here, F(t) is coupled to the beam so that the sphere
acceleration becomes deflection dependent, arising from the unbalanced
gravitational force along the tangent to the beam

FðtÞZmg ðsin qCwxdðxKsÞcos qÞKf : ð3:5Þ
The force due to friction f gives rise to rotation of the load, but does not
dissipate energy in rolling because the base of the load is at rest at each point of
contact with the beam surface. If the load rolls without slipping, a torque
balance requires JaZRf, where a is the angular acceleration of the load. Since
d2s=dt2ZRa, we find fZðJ=R2Þðd2s=dt2Þ. Note that JZð2=5ÞmR2 if the sphere
rolls, and JZ0 if it slips.

In §1, we deduced the appropriate time scale for the sphere’s motion,
TminZminðT1;T2Þ. Thus, by introducing the dimensionless variables �xZx=L,
�wZw=e, �sZs=L and �tZ t=Tmin, (3.1) and (3.2) may be combined and the beam
motion described by
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


2303The elastochrone

 on 28 May 2009rspa.royalsocietypublishing.orgDownloaded from 
e

L
�w�x�x�x�x CK sin q

e

L
�w �t�t ZK cos qCKML cos qKsin q

e

L

d2 �wð�s;�t Þ
d�t 2

� �
dð�xK�sÞ;

ð3:6Þ
for T1[T2, and

e

L
�w�x�x�x�x CK2ð1CMÞ e

L
�w�t�t

ZK cos qCKML cos qKKð1CMÞ e
L

d2 �wð�s;�t Þ
d�t 2

� �
dð�xK�sÞ; ð3:7Þ

for T1/T2, where e is the characteristic deflection (e/L).
(a ) Quasi-static approximation

Provided the motion is quasi-static as defined by (1.4), and that the load’s
inertia is small relative to its weight as defined by (1.5), then both (3.6) and (3.7)
reduce to

e

L
�w�x�x�x�x ZK0 CK0MLdð�xK�sÞ; ð3:8Þ

where K0ZK cos q. We shall proceed by seeking a solution to (3.8). A correction
for the beam shape due to the load’s inertia will be presented in §3d.

The delta function in (3.8), which corresponds physically to a discontinuity in
the shearing force, obliges us to solve for the shape of the beam separately
on either side of the load. For 0% �x!�s, we obtain the beam shape via integration
of (3.8):

e

L
�w1ð�xÞZ

K0

24
�x 4C

c1
6
�x3C

c2
2
�x2Cc3�xCc4:

Likewise, for �s% �x%1 the beam shape is given by

e

L
�w2ð�xÞZ

K0

24
�x 4C

c5
6
�x3C

c6
2
�x2Cc7�xCc8:

The eight boundary conditions required to determine the eight unknown
constants c1, ., c8 are as follows. At �xZ�s, we have the matching conditions
�w1ð�sÞZ �w2ð�sÞ, �w1;�xð�sÞZ �w2;�xð�sÞ and �w1;�x�xð�sÞZ �w2;�x�xð�sÞ, and the jump condition
�w2;�x�x�xð�sÞK�w1;�x�x�xð�sÞZK0ML=e. At �xZ0, the beam is fixed ð�w1ð0ÞZ0Þ and
supported (moment free, �w1;�x�xð0ÞZ0). As a consequence of the small-
displacement approximation, the longitudinal displacement of the hinged end
is of second-order smallness compared with the transverse deflection, and thus we
may take �w2ð1ÞZ0 and �w2;�x�xð1ÞZ0 (Landau & Lifshitz 1986). By solving the
system of equations defined by this set of boundary conditions, the beam shape
may be expressed as a function of the load position

e

L
�w1ð�x;�sÞZ

K0�xð�x3K2�x2 C1K4�x2MC4�x2�sMK12�s2MC8�sMC4�s3MÞ
24

ð3:9Þ
Proc. R. Soc. A (2009)
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and
e

L
�w2ð�x;�sÞZ

K0ð�xK1Þð�x3K�x2K �xC4�x2�sMK8�x�sMC4�s 3MÞ
24

: ð3:10Þ

It follows that the contact between the load and the beam occurs at the point
�w1ð�s;�sÞZ �w2ð�s;�sÞ. If the load is a sphere with radius R, the trajectory of its centre
of mass is therefore

e

L
�wsphereð�xÞZ

K0�xð�xK1Þð8�x2MK8�xMC �x2K �xK1Þ
24

K
R

L
: ð3:11Þ

The maximum static deflection

e

L
�w

1

2
;
1

2

� �
ZK0 ð8MC5Þ

384
ð3:12Þ

is given by the solid curve in figure 5, which is in good agreement with the
experimentally observed deflection amplitude.

By combining (3.4) and (3.5), one obtains an expression for the load dynamics

1C
J

mR2

� �
d2�s

d�t 2
C

e

L

� �2
�w�t�t �wxdð�xK�sÞZ gT2

L

e

L
�wxdð�xK�sÞcos qCsin q

� �
; ð3:13Þ

where we have introduced the dimensionless variables �sZs=L, and �tZ t=T . Since
the second term in (3.13) is of second-order smallness in e/L, we may rewrite
(3.13) as

1C
J

mR2

� �
d2�s

d�t 2
Z

e

L
�wxdð�xK�sÞcos qCsin q; ð3:14Þ

where we choose TZ
ffiffiffiffiffiffiffiffi
L=g

p
for the sake of simplicity. Combining (3.14) with the

�x derivative of (3.9) yields

1C
J

mR2

� �
d2�s

d�t 2
Z

K0 cos qð2�sK1Þ 8�s2MK8�sMC2�s2K2�sK1
� �

24
Csin q: ð3:15Þ

Integration of (3.15) yields an expression for the load speed

1C
J

mR2

� �
d�s

d�t

� �2

Z
K0 cos q �sð�sK1Þð4�s2MK4�sMC�s2K�sK1Þ

12

C2�s sin qC
C

12
; ð3:16Þ

where CZKK0 cos q �x0ð�x0K1Þð4�x 2
0MK4�x0MC �x20K�x 0K1ÞK24�x 0 sin q and �x0

is the initial position of the load. In the quasi-static limit, the elastochrone is thus
defined by

tE Z

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 1C J

mR 2

� �
K0 cos q �sð�sK1Þð4�s 2MK4�sMC�s 2K�sK1ÞC24�s sin q

vuut
d�s; ð3:17Þ

in which �x0Z0.
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6

load-to-beam mass ratio, m /M

pe
ri

od
 o

f 
m

ot
io

n,
 T

/T
o

Figure 11. Dimensionless period of load motion versus load-to-beammass ratio for loads released near
the midpoint of an initially horizontal beam, j x0=LK0:5 j%0:25. The triangles denote the
experimentally observed periods. The theoretically predicted period is given by the solid curve and
defined by (3.19). A characteristic error bar is shown.KZ0.744, qZ0,T0Zð4p=15Þ

ffiffiffiffiffiffiffiffi
630

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=Mg 2L

p
.

2305The elastochrone

 on 28 May 2009rspa.royalsocietypublishing.orgDownloaded from 
(b ) Horizontal beam q/1

For small initial inclinations, the load motion in the quasi-static limit is
described by a nonlinear oscillator, the period of which is mass dependent. The
period may be approximated by considering small-amplitude oscillations about
the stable equilibrium position �sZ1=2. If we define �sZð1=2ÞC3, then (3.15)
reduces to the pendulum equation

3�t�t ZK�u23; ð3:18Þ
where we have neglected terms of Oð32Þ and defined �u2ZðmR2= ðmR2CJÞÞ
KðM=6C1=8Þ. The period predicted by (3.18) assumes the form

T� Z 4p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

J

mR2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

Mg2L

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C 4
3

m
M

q ; ð3:19Þ

which is compatible with (1.2).
We now return to the data presented in figure 7, where the dependence of the

period of load motion on both the load-to-beam mass ratio and release distance is
shown. If we consider only experiments for which the release distance from the
beam’s midpoint is less than one-quarter the beam length, and plot the period
versus load-to-beam mass ratio, we obtain the data collapse shown in figure 11.
The solid curve denotes the theoretically predicted period defined by (3.19).

In figure 12, we present the collapse of the period data presented in figure 7.
The model adequately collapses the observed period data to T � for loads released
near the beam centre, j x0=LK0:5 j%0:25. For loads released substantially off
centre, the period is found numerically by integrating (3.16) for various load-
to-beam mass ratios, and given by the solid and dashed curves. Note that while
(3.16) captures the observed upward trend in period with increasing release
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distance, it overpredicts the period for heavy loads released near the beam’s ends.
The discrepancy likely arises from shortcomings of the quasi-static approxi-
mation, specifically the neglect of the beam’s inertia.
(c ) Inclined beam q[1

Unlike in Galileo’s classical study of rolling spheres along a rigid ramp, the
sphere’s mass affects both its trajectory and velocity when descending along a
flexible beam. In particular, as the load-to-beam mass ratio MZm/M increases,
the descent time decreases. This trend is observed in figure 9 for a particular
incline, qZ108, where the theoretically predicted descent time is obtained via
numerical integration of (3.16). The agreement between the theoretical prediction
(solid curve) and experiment is excellent, with the exception of the data point
representing the heaviest sphere.We note that in this case, the sphere loses contact
with the beam (figure 8c), so (3.16) is no longer valid. For the sake of comparison,
the descent time along the corresponding brachistochrone curve is given by the
dashed line in figure 9. Recall that the brachistochrone curve, the curve of
the fastest descent in a gravitational field, may be defined parametrically as

xZbðfKsin fÞ;
hZbð1Kcos fÞ;

)
ð3:20Þ

where we take the origin of the Cartesian coordinate system (x, h) to be the
upper end of the curve, with h aligned with the direction of gravity.
By specifying the lower end of the curve (x0, h0), the coefficient b is found by
solving numerically the relationship
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x0

h0
Z

f�Ksin f�

1Kcos f� ;

for f� and substituting the result into (3.20). The descent time along the
brachistochrone curve is therefore

tB Z
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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x2 Ch2

2gh

s
dfZf�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

J

mR2

� �
h0

gð1Kcos f�Þ

s
: ð3:21Þ

The elastochrone tends towards the brachistochrone as M increases (figure 9).
However, if the two ever intersect, it would be at a load-to-beammass ratio beyond
that consistent with the quasi-static approximation, for which (1.4) is not satisfied,
and (3.16) cannot be reliably used to determine the descent time. In fact, the
brachistochrone can never exceed the elastochrone.

Consider the path P taken by a sphere descending a flexible beam between two
points in a gravitational field. Let P 0 be the same path taken by a sphere along a
rigid ramp. At each point along P 0, the kinetic energy of the sphere will exceed
that along P by an amount equal to the sum of the bending and kinetic energies
of the beam, both non-negative quantities. Therefore, the elastochrone is
bounded from below by the descent time along a rigid ramp that yields the same
trajectory, that is in turn bounded from below by the brachistochrone.

A comparison between the brachistochrone and elastochrone curves is shown
in figure 13 for 108 and 308 initial inclinations, where we present the trajectories
of a rolling point mass for a particular M and K. In both cases, descent along the
brachistochrone curve is faster than that along the elastochrone curve, as
illustrated by the shaded circles separated by equal time intervals D�tZ0:2. The
trajectory along a Galilean ramp is also included for the sake of comparison.
(d ) Inertial effects

The inertial effects of load motion are twofold. First, the load’s inertia may
augment the gravitational loading, and so give rise to additional deflection.
Second, the beam’s inertia may generate bending waves as the load rolls. For a
beam of uniform mass density M/L, the dispersion relationship is given by
Proc. R. Soc. A (2009)
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uZ k2
ffiffiffiffiffiffiffiffiffi
EIL

M

r
; ð3:22Þ

where k is the wavenumber and u the angular frequency (Landau & Lifshitz
1986). Using a wavelength lZ2p=kZ2L, the value predicted by (3.22), 5.8 sK1,
is consistent with that observed in figure 4. The observed decrease in vibration
frequency with increasing load mass reported in §2 may be roughly understood
by reconsidering a beam of uniform mass density (mCM )/L.

In §3a, we demonstrated that the beam’s inertia is negligible in the quasi-
static limit (1.4). We then considered the limit in which the load’s inertia is also
negligible (1.5), and so obtained an expression for the load trajectory (3.11) and
load speed (3.16). We here extend our theoretical model to include the load’s
inertia by using our results from §3a to approximate the load dynamics.

The load’s inertia becomes important in the beam-and-mass dynamics when
gravitational and inertial loadings are comparable, specifically, when FwO(1).
The inertial loading is encompassed by the total differential in (3.2), which may
be expanded to yield

d2wðs; tÞ
dt2

Zwtt C2wtx

ds

dt
Cwxx

ds

dt

� �2

Cwx

d2s

dt2
: ð3:23Þ

To derive the corrected beam shape ~w, we include (3.23) in the jump condition,
use (3.9) and (3.10) to approximate the beam shape, (3.15) to approximate the
load acceleration and (3.16) its speed, and proceed as in §3a. Rather than
presenting the lengthy result here, we instead present the maximum dynamic
deflection for JZ2/5, and qZ0:

e

L
~w

1

2
;
1

2

� �
Z

e

L
�w

1

2
;
1

2

� �
C

25

516 096
K3MC

5

36 864
K3M2 C

5

64 512
K3M3;

ð3:24Þ

corresponding to the parameters of the experiment presented in figure 3. The
deflection amplitude predicted by (3.24) is given by the dashed curve in figure 5,
and provides a small improvement to that predicted by (3.12), the derivation of
which neglected load inertia. The observed dependence of the vibration
amplitude on the mass ratio is shown in figure 6. The dependence may be
understood by considering the increased deflection caused by the inertial loading,
~wK �w, given by the solid line.
The influence of the inertial loading on the sphere dynamics is readily

determined by substituting ~wx for �wx in (3.14). For JZ2/5, qZ0 and 0% �x0%1,
we numerically integrate the resulting equation for load-to-beam mass ratios
0.68, 2.29 and 5.43. The theoretically predicted descent times are plotted in
figure 12 and are indistinguishable from those predicted without consideration of
the load’s inertia. We thus conclude that the discrepancy between experiment
and theory apparent in figure 12 cannot be attributed to the neglect of the load’s
inertia alone, but probably arises from the neglect of the beam inertia.
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4. Discussion

We have presented the results of a combined theoretical and experimental
investigation of the dynamic behaviour of flexible beams subjected to moving
loads with deflection-dependent acceleration. We first observe that heavy loads
traverse the beam faster than light loads owing to the coupling between the load
mass and beam deflection. For initially horizontal beams, an oscillatory motion
takes place, the period of which decreases with increasing load mass, unlike for a
simple pendulum.

We have rationalized the observed behaviour by developing a theoretical model
for the beam-and-mass dynamics based on Euler–Bernoulli beam theory. In the
quasi-static limit, we obtain an exact expression for the load trajectory and a simple
expression for its velocity, both of which are found to be in excellent agreementwith
experiment. For an initially horizontal beam with KZMgL2=EIZ0:744, our
theoretical model reasonably predicts the period of load motion for load-to-beam
mass ratios MZm=M!3. For MO3, the discrepancy may be attributed
to shortcomings of the quasi-static approximation, which neglects the kinetic
energy of the beam. While the small-slope approximation provides a potential
source of error, numerical results indicate that this error accounts for less than 1%of
the observed difference in descent times between experiment and theory forM%6.
Finally, we have demonstrated that the descent time along a flexible beam,
the elastochrone, always exceeds the classical brachistochrone.

There are several outstanding questions that warrant further consideration.
While our theoretical model provides a first approximation for the load motion
in the regime in which the quasi-static assumption breaks down, it overpredicts
the period of motion. A more sophisticated model would entail consideration
of the influence of beam vibrations on the load motion. Finally, while separation
between a load moving at constant speed and its supporting structure was
considered by Lee (1998), the general case in which the load motion is deflection
dependent has yet to be investigated.

The authors thank Pedro Reis for his assistance with construction of the experimental apparatus,
Charety Aristoff for her assistance with the experimental study and the Edgerton Center at MIT
for use of their photographic equipment. J.M.A. gratefully acknowledges the financial support of
the National Defense Science and Engineering Graduate Fellowship Program.
Appendix A. Small-slope approximation

We here consider the range of validity of the small-slope approximation, wx/1,
for determining the quasi-static shape of the beam. In the quasi-static limit, the
shape of an Euler–Bernoulli beam with arbitrarily large slopes may be solved
numerically using the shooting method. We do so for the beam used in the
experimental study, and present the predicted deflection amplitude versus load-
to-beam mass ratio as the dash-dotted curve in figure 14. For comparison, the
predicted deflection amplitude in the small-slope, quasi-static limit is given by
the solid curve. For load-to-beammass ratiosm/M!10, the error due to the small-
slope approximation is negligible. Moreover, both predictions are in excellent
agreement with a series of experiments wherein each of the nine spheres was
placed statically at the beam’s midpoint and its deflection amplitude measured.
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solid curve denotes the small-slope approximation and is defined by (3.12). The dash-dotted curve
denotes the numerical solution to the nonlinear beam equation in the quasi-static limit.

A characteristic error bar is shown.
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