18.02A pset 3, part II solutions, fall 2009

Problem 1

a) \(\nabla C = \left\langle -\frac{2x}{10^4} e^{-(x^2+y^2)/10^4}, -\frac{4y}{10^4} e^{-(x^2+y^2)/10^4} \right\rangle = -\frac{2C(x,y)}{10^4} \langle x, 2y \rangle \).

The radial direction at \((x, y)\) is \(\mathbf{\hat{u}} = \frac{\langle x, y \rangle}{\sqrt{x^2+y^2}} \). \Rightarrow \frac{dC}{ds} \bigg|_{\mathbf{\hat{u}}} = \nabla C \cdot \mathbf{\hat{u}} = -\frac{2C(x,y)}{10^4} \frac{(x^2 + 2y^2)}{\sqrt{x^2+y^2}}.

b) The path must have the same slope as the gradient vector at each point.

That is, \(\frac{dy}{dx} = \frac{2y}{x} \). In 18.01 you learned to separate variables and integrate:

\[
\frac{dy}{y} = \frac{2dx}{x} \Rightarrow \ln y = \ln(x^2) + C \Rightarrow y = Ke^{x^2}.
\]

Using the starting position to determine \(K \), we get the shark’s path is along \(y = \frac{y_0}{x_0^2} x^2 \).

Problem 2

a) The surface is the level surface \(w = z^2 + x^2y^2 + y^3 + x^2 = 4 \).

The normal is \(\nabla w = \langle 2xy^2 + 2x, 2yx^2 + 3y^2, 2z \rangle \). At \((1, 1, 1)\) we get \(\nabla w = \langle 4, 5, 2 \rangle \)

\(\Rightarrow \) the equation of the tangent plane is \(\boxed{4x + 5y + 2z = 11} \).

b) We want to minimize the distance squared \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to the constraint \(4x + 5y + 2z = 11 \).

Lagrange multipliers gives: \(2x = 4\lambda, \ 2y = 5\lambda, \ 2z = 2\lambda, \ 4x + 5y + 2z = 11 \).

Substituting for \(x, y, z \) in terms of \(\lambda \) in the constraint gives \(8\lambda + \frac{25}{2}\lambda + 2\lambda = 11 \Rightarrow \lambda = \frac{22}{45} \)

\(\Rightarrow \) the one critical point is \(\boxed{\frac{11}{45}(4, 5, 2)} \) \(\Rightarrow \) minimum distance = \(\frac{11}{45} \sqrt{45} \).

Problem 3

We want to minimize distance squared \(= x^2 + (y - b)^2 \), subject to the constraint \(y = x^2 \).

The easiest method is to substitute for \(y \).

Thus, distance squared \(= f(x) = x^2 + (x^2 - b)^2 \).

Critical points: \(f'(x) = 2x + 4x(x^2 - b) = 0 \Rightarrow x = 0 \) or \(x^2 = b - 1/2 \).

There are two cases:

(i) \(b > 1/2 \): critical points are \(x = 0 \) and \(x = \pm \sqrt{b - 1/2} \).

Evaluating at the critical points: \(f(0) = b^2, \ f(\pm \sqrt{b - 1/2}) = b - 1/4 \).

Since \(b^2 \geq b - 1/4 \) (because \(b^2 - b + 1/4 = (b - 1/2)^2 \geq 0 \)) the minimum distance in this case is \(\sqrt{b - 1/4} \).

(ii) \(b \leq 1/2 \): the only critical point is \(x = 0 \) \(\Rightarrow \) minimum distance = \(b \).

If you insist on using Lagrange multipliers here it is (the constraint \(x^2 - y = 0 \)).

\(\Rightarrow \ 2x = 2x\lambda, \ 2(y - b) = -\lambda, \ y = x^2 \). As above, there are two cases:

(i) \(\lambda = 1 \) \(\Rightarrow \ y = b - 1/2 = x^2 \): same as case (i) above.

or \(\lambda = 0 \) \(\Rightarrow \ x = 0, \ y = b \): same as case (ii) above.
Problem 4
Before starting we note that if \(\cos a = \cos b \) then either \(b = a \) or \(b = 2\pi - a \).

We start with a circle of radius \(r \) and center \(O \).

Pick three points around the circle with central angles as shown.

Easy trigonometry gives the area of triangle \(OAB = r^2 \cos(\alpha/2) \sin(\alpha/2) = \frac{1}{2} r^2 \sin \alpha \).

Likewise area of \(OBC = \frac{1}{2} r^2 \sin \beta \) and area of \(OCA = \frac{1}{2} r^2 \sin \gamma \).

So, the area of triangle \(ABC = \frac{1}{2} r^2 (\sin \alpha + \sin \beta + \sin \gamma) \), with constraint \(\alpha + \beta + \gamma = 2\pi \).

To find critical points we use Lagrange multipliers:

\[
\frac{1}{2} r^2 \cos \alpha = \lambda, \quad \frac{1}{2} r^2 \cos \beta = \lambda, \quad \frac{1}{2} r^2 \cos \gamma = \lambda, \quad \alpha + \beta + \gamma = 2\pi.
\]

\(\Rightarrow \cos \alpha = \cos \beta = \cos \gamma \).

Our note at the start of the problem implies there are two cases:

(i) All three angles are equal: \(\alpha = \beta = \gamma \).

(ii) Exactly two are the same: say \(\alpha = \beta \) and \(\gamma = 2\pi - \alpha \).

In case (i) the constraint gives \(\alpha = \beta = \gamma = 2\pi/3 \Rightarrow \text{area} = \frac{3r^2}{2} \sin \alpha = \frac{3\sqrt{3}r^2}{4} \).

In case (ii) the constraint gives \(\alpha = \beta = 0, \gamma = 2\pi \Rightarrow \text{area} = 0 \).

Thus the maximum area = \(\frac{3\sqrt{3}r^2}{4} \), for an equilateral triangle.

Problem 5
\(f(x, y) = x^2 - 2xy + 7y^2 \) (objective function).
\(g(x, t) = x^2 + 4y^2 = 1 \) (constraint).

Lagrange: \(\nabla f = \lambda \nabla g \)

\[
\begin{align*}
2x - 2y &= \lambda 2x \\
-2x + 14y &= \lambda 8y \\
x^2 + 4y^2 &= 1
\end{align*}
\]

\(\Rightarrow \begin{cases}
2x - 2y = \lambda 2x \\
-2x + 14y = \lambda 8y \\
x^2 + 4y^2 = 1
\end{cases} \iff \begin{cases}
x - y = \lambda x \\
-x + 7y = 4\lambda y \\
x^2 + 4y^2 = 1
\end{cases} \]

There are several methods of solving these equations. (We give only one below.)

They all lead to:

\[
\begin{cases}
(x, y) = (1/\sqrt{5}, -1/\sqrt{5}) \quad \text{or} \quad (-1/\sqrt{5}, 1/\sqrt{5}), \quad f(x, y) = 2, \quad \text{maximum}. \\
(x, y) = (2/\sqrt{5}, 1/2 \sqrt{5}) \quad \text{or} \quad (-2/\sqrt{5}, -1/2 \sqrt{5}), \quad f(x, y) = 3/4, \quad \text{minimum}.
\end{cases}
\]

Solve symmetrically: Take the two equations with \(\lambda \) and multiply to make the left hand sides the same

\(\Rightarrow \begin{cases}
4xy - 4y^2 = 4\lambda xy \\
x^2 + 7xy = 4\lambda xy \end{cases} \Rightarrow 4xy - 4y^2 = -x^2 + 7xy \Rightarrow 4y^2 = x^2 - 3xy.
\]

The constraint equation can be written as \(4y^2 = 1 - x^2 \), combining this with the equation just above gives \(x^2 - 3xy = 1 - x^2 \Rightarrow y = \frac{2x^2 - 1}{3x^2} \).

Substitute in the constraint equation \(\Rightarrow x^2 + 4 \left(\frac{2x^2 - 1}{3x^2} \right)^2 = 1 \)

\(\Rightarrow 9x^4 + 16x^4 - 16x^2 + 4 = 9x^2 \Rightarrow 25x^4 - 25x^2 + 4 = 0 \Rightarrow (5x^2 - 4)(5x^2 - 1) = 0 \)

\(\Rightarrow x = \pm 2/\sqrt{5}, \quad \pm 1/\sqrt{5} \).
Now use these x to find y and then evaluate $f(x, y)$ to decide which are minima and which are maxima.

Problem 6

a) A little thought shows the rectangle of maximum area must have sides parallel to the axes. So we have area $A = 2xy$, with constraint $x^2 + y^2 = 4$

Lagrange multipliers gives: $2y = 2x\lambda$, $2x = 2y\lambda$, $x^2 + y^2 = 4$.

Solving symmetrically: $\frac{y}{x} = \lambda = \frac{x}{y} \Rightarrow y^2 = x^2$

\Rightarrow (use the constraint) $2x^2 = 4 \Rightarrow x = \sqrt{2} = y$. So, maximum area = 4.

b) Using Lagrange multipliers: $2x = 4\lambda$, $2y = 5\lambda$, $6z = 6\lambda$, $4x + 5y + 6z = 1$.

Substituting for x, y, z in terms of λ in the constraint gives $\frac{53}{2} \lambda = 1 \Rightarrow \lambda = \frac{2}{53}$.

$(x, y, z) = \frac{2}{53}(2, 5/2, 1) = \frac{1}{53}(4, 5, 2). \Rightarrow \text{minimum value} = \frac{1}{53^2}(16 + 25 + 12) = \frac{1}{53}$

Problem 7

For starters, $\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle \Rightarrow |\nabla f|^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$.

Polar coordinates: $x = r \cos \theta \Rightarrow \frac{\partial x}{\partial r} = \cos \theta$, $\frac{\partial x}{\partial \theta} = -r \sin \theta$.

$y = r \sin \theta \Rightarrow \frac{\partial y}{\partial r} = \sin \theta$, $\frac{\partial y}{\partial \theta} = r \cos \theta$.

Using the chain rule:

$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial x} (-r \sin \theta) + \frac{\partial f}{\partial y} r \cos \theta$.

$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$.

$\Rightarrow \left(\frac{1}{r} \frac{\partial f}{\partial \theta}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sin^2 \theta - 2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \sin \theta \cos \theta + \left(\frac{\partial f}{\partial y}\right)^2 \cos^2 \theta$

$\left(\frac{\partial f}{\partial r}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 \cos^2 \theta + 2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \sin \theta \cos \theta + \left(\frac{\partial f}{\partial y}\right)^2 \sin^2 \theta$

Adding these two lines gives $\Rightarrow \left(\frac{1}{r} \frac{\partial f}{\partial \theta}\right)^2 + \left(\frac{\partial f}{\partial r}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = |\nabla f|^2$.

Problem 8

Chain rule:

$\frac{dF}{dt} = \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt}$.

Computing:

$\frac{dx}{dt} = -1$, $\frac{\partial f}{\partial x} = -2xF_0 e^{-x^2+y^2+z^2}$

$\frac{dy}{dt} = 0 \Rightarrow \text{don’t need } \frac{\partial f}{\partial y}$

$\frac{dz}{dt} = -2(1-t)$, $\frac{\partial f}{\partial z} = -2zF_0 e^{-x^2+y^2+z^2}$.

$\Rightarrow \frac{dF}{dt} = -2xF_0 e^{-x^2+y^2+z^2}(-1) - 2zF_0 e^{-x^2+y^2+z^2}(-2)(1-t)$

$= F_0 e^{-(1-t)^2}(-(1-t)^3) (2(1-t) + 4(1-t)^3)$.