Problem 1 (25 pts: 5, 10, 10) The rectangular box has edges of lengths 1, 2, 3 lying along the coordinate axes, as shown. Using head-to-tail addition, \(RQ = -2i + k \).

a) Express similarly \(PQ \) and \(PR \) in terms of \(i, j, \) and \(k \).

b) Find the cosine of the angle \(\theta = RPQ \).

c) Find a perpendicular vector to the plane through \(P, Q, \) and \(R \), and find the area of triangle \(PQR \).

Problem 2. (25 pts: 10, 10, 5)

\[
\begin{bmatrix}
1 & 0 & 1 \\
2 & 1 & 2 \\
1 & 2 & 3
\end{bmatrix}
\]

a) If \(A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} \), fill in the missing four entries in:

\[
A^{-1} = \begin{bmatrix} -1/2 & 1 & -1/2 \\ 3/2 \\ -2 \end{bmatrix}
\]

b) Solve \(x_1 + x_3 = 2 \) if \(c = 3 \), using part (a).

\[
\begin{align*}
2x_1 + x_2 + 2x_3 &= 1 \\
x_1 + 2x_2 + cx_3 &= 2
\end{align*}
\]

Then check the value of \(x_1 \) by using Cramer's rule. (Show work.)

c) For one value of \(c \) the system in (b) has no solution. Find this value.

Problem 3. (25 pts: 5, 10, 10)

A moving point \(P \) has coordinates \(x = (t - 1)^2, \ y = t^2, \ z = 2t - 1 \).

a) Where (i.e., at what point) does it pass through the \(yz \)-plane?

b) At time \(t = 0 \), find its speed and the unit tangent vector to the motion.

c) Find a constant vector perpendicular to the position vector \(\mathbf{R} = \mathbf{OP} \). What does this tell you geometrically about the motion?

Problem 4. (10 pts.) Scotch tape is being peeled off a roll of radius \(a \), starting at the point \(A \). The end \(P(x,y) \) is always pulled vertically upwards. Use vector methods to write parametric equations for \(x \) and \(y \) terms of \(\theta \), for \(0 \leq \theta \leq \pi \).

(See fig. below)

Problem 5. (10 pts.) Using the standard operations on vectors, prove that if the diagonals of a parallelogram are perpendicular, its four sides have equal length.

Problem 6. (5 pts). A point moves with constant speed. Prove its velocity vector \(\mathbf{v} \) and its acceleration vector \(\mathbf{a} \) are always perpendicular. (Consider \(\mathbf{v} \cdot \mathbf{v} \).)