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1.4.18 We have that Chebyshev’s inequality implies

µ

({
ω;
∣∣∣∣Sn(ω)

n

∣∣∣∣ < ε

})
≤ 3n−2ε−4.

Now we are meant to choose a sequence εn −→ 0 such that
∞∑

n=1

n−2ε−4
n

is finite. Here, we have to be explicit, we need to actually write down a formula for εn

satisfying these criteria to exhibit that such a sequence exists. It’s good to be able to rattle
off a few convergent infinite sums for just this sort of occassion (or for dinner parties); the
two most common examples are

∞∑
n=1

n−p for p ∈ R, p > 1, and
∞∑

n=1

an for a ∈ R, |a| < 1.

(These two examples can be proven by the integral test and the geometric series formula
respectively.)

So we’d like to choose our εn so that the summand in the infinite sum above matches one
of these sums that is known to converge. Because we are multiplying a power of εn by n−2,
getting the sum to look like the first sum seems much more promising. So in other words,
we’d like to choose εn so that both εn −→ 0 and ∀n ∈ N,

n−2ε−4
n = n−p

for some p > 1. So we solve for εn:

n−2ε−4
n = n−p

ε−4
n = n2−p

ε4
n = np−2

εn = n
p−2
4

Now we have to choose p subject to two restraints: for our sum to converge, we need p > 1,

and for εn −→ 0, we need
p− 2

4
< 0 =⇒ p < 2. So let p = 3

2 . Then

εn = n
3
2−2

4 = n−
1
8 .

So now we define the set

An =
{

ω;
∣∣∣∣Sn(ω)

n

∣∣∣∣ > n−
1
8

}
∈ F .

Then we have (from the first equation above),

µ(An) ≤ 3n−2(n−
1
8 )−4 = 3n−

3
2 .

1



Thus,
∞∑

n=1

µ(An) ≤
∞∑

n=1

3n−
3
2 = 3

∞∑
n=1

n−
3
2 < ∞.

So by the first Borel-Cantelli lemma, if A = {Ai; i.o.}, then µ(A) = 0. Now it isn’t too hard
to derive the law of large numbers.

0 = µ(A) = µ({Ai; i.o.}) = µ

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= lim

n−→∞
µ

( ∞⋃
k=n

Ak

)
=

lim
n−→∞

µ

( ∞⋃
k=n

{
ω;
∣∣∣∣Sk(ω)

k

∣∣∣∣ > k−
1
8

})
= lim

n−→∞
µ

({
ω;∃k ≥ n s.t.

∣∣∣∣Sk(ω)
k

∣∣∣∣ > k−
1
8

})
≥ µ

({
ω;
∣∣∣∣Si(ω)

i

∣∣∣∣ 6→ 0
})

,

since {
ω;
∣∣∣∣Si(ω)

i

∣∣∣∣ 6→ 0
}
⊆
{

ω;∃k ≥ n s.t.
∣∣∣∣Sk(ω)

k

∣∣∣∣ > k−
1
8

}
∀n ∈ N.

So we have shown

µ

({
ω;
∣∣∣∣Si(ω)

i

∣∣∣∣ 6→ 0
})

= 0,

the law of large numbers.

1.4.19 We have X = {x1, x2, . . .}, and Pi ∈ R nonnegative with
∞∑
i=1

Pi = 1 and µ(A) =
∑
xi∈A

Pi.

We prove this by contradiction: assume there does exist an infinite sequence {Ai}∞i=1 of
independent sets, all with measure 1

2 . Then let xr ∈ X, n ∈ N. For each Ai, i ∈ {1, 2, . . . , n},
we either have xr ∈ Ai or xr 6∈ Ai. If xr ∈ Ai, let Bi = Ai, if xr 6∈ Ai, let Bi = Ac

i . Then for
each i, xr ∈ Bi, and either µ(Bi) = µ(Ai) = 1

2 or µ(Bi) = µ(Ac
i ) = 1 − µ(Ai) = 1 − 1

2 = 1
2 .

So µ(Bi) = 1
2 for all i.

Since the A1, A2, . . . , An are independent, by problem 1.4.10a (applied as necessary), the
B1, B2, . . . , Bn are independent. Thus,

µ

(
n⋂

i=1

Bi

)
=

n∏
i=1

µ(Bi) =
1
2n

.

But xr ∈ Bi for each i, so x ∈
⋂

Bi, so

1
2n

= µ

(
n⋂

i=1

Bi

)
=

∑
xj∈∩Bi

Pj ≥ Pr.



So we have shown that Pr ≤ 1
2n . Since n was arbitrary, we can let n −→ ∞. Then Pr = 0.

But r was also arbitrary, so Pi = 0 for all i. But this blatantly contradicts
∞∑
i=1

Pi = 1,

so our assumption must be false. Therefore, there does not exist an infinite sequence of
independent sets with measure 1

2 .


