18.103 Problem Set 2 Partial Solutions

Sawyer Tabony

1.3.10 We have to prove 2^{X} is a complete metric space, when it has the distance function $d(A, B)=$ $\mu^{*}[S(A, B)]$. Completeness is the property that all Cauchy sequences converge to an element of the space, so we must take a generic Cauchy sequence in 2^{X}, say $\left(A_{i}\right)$, and prove that it converges to some $A \in 2^{X}$.

Usually, for these completeness arguments, you want to come up with a good candidate for the limit, and then prove that the sequence converges to it. So here, we want a subset of X that contain exactly the elements that are "eventually" in the all of the sets A_{i}. Thus, let's try the set

$$
A=\bigcup_{n=1}^{\infty}\left[\bigcap_{i=n}^{\infty} A_{i}\right] .
$$

This is the natural choice, because $n=1$ gives the points that are in all the $A_{i}^{\prime} s$, and as n gets larger we ignore more and more of the first $A_{i}^{\prime} s$, since we are more interested in the tail of the sequence to find its limit. However, this is slightly too restrictive a set. Consider the sequence of sets:

$$
\begin{gathered}
A_{n}=[0,1] \backslash\left\{x \in[0,1] \mid \exists m \in \mathbb{Z} \text { with } H_{n}<x+m<H_{n+1}\right\}, \\
\text { where } H_{n}=\sum_{j=1}^{n} \frac{1}{j}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}+\frac{1}{n} .
\end{gathered}
$$

(see associated picture)
You are probably aware that the harmonic series diverges, that is, $H_{n} \longrightarrow \infty$ as $n \longrightarrow \infty$. Thus, given $x \in[0,1]$, for any $N \in \mathbb{N}$, there is some $n>N$ with $H_{n} \leq x+N<H_{n+1}$, so $x \notin A_{n}$. Therefore $x \notin \cap_{i=N}^{\infty} A_{i}$ for any $N \in \mathbb{N}$, so $x \notin A$, so $A=\emptyset$. However, under the metric given, it is easy to see that $d\left(A_{n},[0,1]\right)=\frac{1}{n+1} \longrightarrow 0$, so the sequence actually converges to $[0,1]$.

To make the set not quite as restrictive, we will pick a subsequence of $\left(A_{n}\right)$ and use the above formula with the subsequence. We may then apply the fact that if a subsequence of a Cauchy sequence converges to a limit, the entire sequence converges to the same limit. We will choose the subsequence to make the future calculations easy. Since $\left(A_{n}\right)$ is Cauchy, for any $j \in \mathbb{N}, \exists N_{j} \in \mathbb{N}$ such that $\forall m, n \geq N_{j}$,

$$
\frac{1}{2^{j}}>d\left(A_{m}, A_{n}\right)=\mu^{*}\left[S\left(A_{m}, A_{n}\right)\right] .
$$

So our subsequence is $\left(A_{N_{j}}\right)_{j=1}^{\infty}=\left(B_{j}\right)$, and we let

$$
B=\bigcup_{n=1}^{\infty}\left[\bigcap_{j=n}^{\infty} B_{j}\right] .
$$

Now, given $\varepsilon>0$, we show that for all $m \geq M$, for $2^{2-M}<\varepsilon, d\left(B_{m}, B\right)<\varepsilon$. We have

$$
\begin{aligned}
d\left(B_{m}, B\right) & =\mu^{*}\left[S\left(B_{m}, B\right)\right]=\mu^{*}\left[\left(B_{m} \backslash B\right) \cup\left(B \backslash B_{m}\right)\right] \leq \mu^{*}\left[B_{m} \backslash B\right]+\mu^{*}\left[B \backslash B_{m}\right] \\
& =\mu^{*}\left[B_{m} \backslash \bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty} B_{i}\right)\right]+\mu^{*}\left[\left(\bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty} B_{i}\right)\right) \backslash B_{m}\right] \\
& =\mu^{*}\left[\bigcap_{n=1}^{\infty}\left(B_{m} \backslash \bigcap_{i=n}^{\infty} B_{i}\right)\right]+\mu^{*}\left[\bigcup_{n=1}^{\infty}\left(\left(\bigcap_{i=n}^{\infty} B_{i}\right) \backslash B_{m}\right)\right] \\
& =\mu^{*}\left[\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty}\left(B_{m} \backslash B_{i}\right)\right]+\mu^{*}\left[\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty}\left(B_{i} \backslash B_{m}\right)\right]
\end{aligned}
$$

Now each summand must be controlled. The first summand is the measure of an intersection of nested sets, since

$$
\bigcup_{i=n}^{\infty}\left(B_{m} \backslash B_{i}\right) \supseteq \bigcup_{i=n+1}^{\infty}\left(B_{m} \backslash B_{i}\right)
$$

Therefore it can be bounded above by the measure of one of its terms:

$$
\begin{aligned}
& \mu^{*}\left[\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty}\left(B_{m} \backslash B_{i}\right)\right] \leq \mu^{*}\left[\bigcup_{i=M}^{\infty}\left(B_{m} \backslash B_{i}\right)\right] \leq \mu^{*}\left[\left(B_{m} \backslash B_{M}\right) \cup \bigcup_{i=M}^{\infty}\left(B_{i+1} \backslash B_{i}\right)\right] \\
& \quad \leq \mu^{*}\left[\left(B_{m} \backslash B_{M}\right)\right]+\sum_{i=M}^{\infty} \mu^{*}\left[\left(B_{i+1} \backslash B_{i}\right)\right]<2^{-M}+\sum_{i=M}^{\infty} 2^{-i}=2^{-M}+2^{1-M}=3 \cdot 2^{-M} .
\end{aligned}
$$

The second summand is the measure of a union of nested sets, since

$$
\bigcap_{i=n}^{\infty}\left(B_{i} \backslash B_{m}\right) \subseteq \bigcap_{i=n+1}^{\infty}\left(B_{i} \backslash B_{m}\right) .
$$

So its measure is equal to the limit of the measures of the sets in the nested sequence:

$$
\mu^{*}\left[\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty}\left(B_{i} \backslash B_{m}\right)\right]=\lim _{n \longrightarrow \infty} \mu^{*}\left[\bigcap_{i=n}^{\infty}\left(B_{i} \backslash B_{m}\right)\right] \leq \limsup _{n \longrightarrow \infty} \mu^{*}\left[B_{n} \backslash B_{m}\right] \leq 2^{-M}
$$

So, we finally get:
$d\left(B_{m}, B\right) \leq \mu^{*}\left[\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty}\left(B_{m} \backslash B_{i}\right)\right]+\mu^{*}\left[\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty}\left(B_{i} \backslash B_{m}\right)\right] \leq 3 \cdot 2^{-M}+2^{-M}=2^{2-M}<\varepsilon$.
Which shows that the subsequence, and thus the sequence, converges to B, so 2^{X} is complete.

