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1.3.10 We have to prove 2X is a complete metric space, when it has the distance function d(A,B) =
µ∗[S(A,B)]. Completeness is the property that all Cauchy sequences converge to an element
of the space, so we must take a generic Cauchy sequence in 2X , say (Ai), and prove that it
converges to some A ∈ 2X .

Usually, for these completeness arguments, you want to come up with a good candidate
for the limit, and then prove that the sequence converges to it. So here, we want a subset
of X that contain exactly the elements that are “eventually” in the all of the sets Ai. Thus,
let’s try the set

A =
∞⋃

n=1

[ ∞⋂
i=n

Ai

]
.

This is the natural choice, because n = 1 gives the points that are in all the A′is, and as n
gets larger we ignore more and more of the first A′is, since we are more interested in the tail
of the sequence to find its limit. However, this is slightly too restrictive a set. Consider the
sequence of sets:

An = [0, 1] \ {x ∈ [0, 1]|∃m ∈ Z with Hn < x + m < Hn+1},

where Hn =
n∑

j=1

1
j

= 1 +
1
2

+
1
3

+ · · ·+ 1
n− 1

+
1
n

.

(see associated picture)
You are probably aware that the harmonic series diverges, that is, Hn −→∞ as n −→∞.

Thus, given x ∈ [0, 1], for any N ∈ N, there is some n > N with Hn ≤ x + N < Hn+1,
so x 6∈ An. Therefore x 6∈ ∩∞i=NAi for any N ∈ N, so x 6∈ A, so A = ∅. However, under
the metric given, it is easy to see that d(An, [0, 1]) = 1

n+1 −→ 0, so the sequence actually
converges to [0, 1].

To make the set not quite as restrictive, we will pick a subsequence of (An) and use the
above formula with the subsequence. We may then apply the fact that if a subsequence of a
Cauchy sequence converges to a limit, the entire sequence converges to the same limit. We
will choose the subsequence to make the future calculations easy. Since (An) is Cauchy, for
any j ∈ N, ∃Nj ∈ N such that ∀m,n ≥ Nj ,

1
2j

> d(Am, An) = µ∗[S(Am, An)].

So our subsequence is (ANj )
∞
j=1 = (Bj), and we let

B =
∞⋃

n=1

[ ∞⋂
j=n

Bj

]
.
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Now, given ε > 0, we show that for all m ≥ M , for 22−M < ε, d(Bm, B) < ε. We have

d(Bm, B) = µ∗[S(Bm, B)] = µ∗[(Bm \B) ∪ (B \Bm)] ≤ µ∗[Bm \B] + µ∗[B \Bm]

= µ∗[Bm \
∞⋃

n=1

( ∞⋂
i=n

Bi

)
] + µ∗[

( ∞⋃
n=1

(
∞⋂

i=n

Bi)
)
\Bm]

= µ∗[
∞⋂

n=1

(
Bm \

∞⋂
i=n

Bi

)
] + µ∗[

∞⋃
n=1

((
∞⋂

i=n

Bi) \Bm)]

= µ∗[
∞⋂

n=1

∞⋃
i=n

(
Bm \Bi

)
] + µ∗[

∞⋃
n=1

∞⋂
i=n

(Bi \Bm)]

Now each summand must be controlled. The first summand is the measure of an intersection
of nested sets, since

∞⋃
i=n

(
Bm \Bi

)
⊇

∞⋃
i=n+1

(
Bm \Bi

)
.

Therefore it can be bounded above by the measure of one of its terms:

µ∗[
∞⋂

n=1

∞⋃
i=n

(
Bm \Bi

)
] ≤ µ∗[

∞⋃
i=M

(
Bm \Bi

)
] ≤ µ∗[

(
Bm \BM

)
∪

∞⋃
i=M

(
Bi+1 \Bi

)
]

≤ µ∗[(Bm \BM )] +
∞∑

i=M

µ∗[
(
Bi+1 \Bi

)
] < 2−M +

∞∑
i=M

2−i = 2−M + 21−M = 3 · 2−M .

The second summand is the measure of a union of nested sets, since
∞⋂

i=n

(Bi \Bm) ⊆
∞⋂

i=n+1

(Bi \Bm).

So its measure is equal to the limit of the measures of the sets in the nested sequence:

µ∗[
∞⋃

n=1

∞⋂
i=n

(Bi \Bm)] = lim
n−→∞

µ∗[
∞⋂

i=n

(Bi \Bm)] ≤ lim sup
n−→∞

µ∗[Bn \Bm] ≤ 2−M .

So, we finally get:

d(Bm, B) ≤ µ∗[
∞⋂

n=1

∞⋃
i=n

(
Bm \Bi

)
] + µ∗[

∞⋃
n=1

∞⋂
i=n

(Bi \Bm)] ≤ 3 · 2−M + 2−M = 22−M < ε.

Which shows that the subsequence, and thus the sequence, converges to B, so 2X is complete.


