18.103 Problem Set 1

Sawyer Tabony

PROBLEM 1.1.21

This problem was to show that intervals with nonzero length aren't, quite unsurprisingly, sets of Lebesgue measure zero. So we consider an interval $[a, b]$ with $a<b$. If this was a set of measure zero, for any $\varepsilon>0$, there would be a cover of this set by open intervals of total length less than ε.

So, more mathematically, we assume $[a, b]$ has Lebesgue measure zero. Therefore, for $\varepsilon=\frac{b-a}{2}$, $\exists\left\{I_{j}\right\}$, a (possibly countably infinite) collection of open intervals $\left(s_{j}, t_{j}\right)$ such that

$$
[a, b] \subseteq \bigcup_{j} I_{j} \text { and } \sum_{j}\left(t_{j}-s_{j}\right)<\varepsilon=\frac{b-a}{2}
$$

Thus $\left\{I_{j}\right\}$ is an open cover of $[a, b]$, a compact set by Heine-Borel. So there is a finite subcover, some $\left\{I_{k}\right\}_{k=1}^{N}$, which we can assume is chosen so no interval is contained in another. Order these intervals by the size of s_{k}, so $s_{1} \leq s_{2} \leq \ldots$. Since $a \in \cup_{k} I_{k}$, there is some greatest k with $a \in I_{k}$, that is, $s_{k}<a<t_{k}$, and some least k^{\prime} with $b \in I_{k^{\prime}}$. Then since these intervals aren't contained within each other and cover $[a, b]$, we have

$$
s_{k}<a<s_{k+1}<t_{k}<s_{k+2}<t_{k+1}<\cdots<s_{i}<t_{i-1}<s_{i+1}<t_{i}<\cdots<s_{k^{\prime}}<t_{k^{\prime}-1}<b<t_{k^{\prime}}
$$

So, we can calculate:

$$
\sum_{i=k}^{k^{\prime}}\left(t_{i}-s_{i}\right)>\left(t_{k}-s_{k}\right)+\sum_{i=k+1}^{k^{\prime}}\left(t_{i}-t_{i-1}\right)=\left(t_{k}-s_{k}\right)+\left(t_{k^{\prime}}-t_{k}\right)=t_{k^{\prime}}-s_{k}>b-a
$$

But we also have:

$$
\sum_{i=k}^{k^{\prime}}\left(t_{i}-s_{i}\right)<\sum_{j}\left(t_{j}-s_{j}\right)<\varepsilon=\frac{b-a}{2}
$$

So we have shown $b-a<\frac{b-a}{2}$, a contradiction. Therefore our assumption is false, so $[a, b]$ does not have Lebesgue measure zero.

