Small Divisors and the NLSE

Bobby Wilson (MSRI)

MSRI, September 2015
Let \(u \in C^k(T) \), \(\int_T u = 0 \), \(\alpha \in \mathbb{R} \), \(T := \mathbb{R}/\mathbb{Z} \).
Find \(v : T \rightarrow \mathbb{R} \) such that

\[
v(x + \alpha) - v(x) = u(x), \text{ for all } x \in T
\]

(1)
In Fourier coefficients, (1) becomes

\[
(e^{2\pi in\alpha} - 1)\hat{v}(n) = \hat{u}(n), \quad n \in \mathbb{Z} \setminus \{0\}
\]

\[
\hat{v}(n) = (e^{2\pi in\alpha} - 1)^{-1} \hat{u}(n) \approx (\{n\alpha\})^{-1} \hat{u}(n)
\]
In Fourier coefficients, (1) becomes

\[(e^{2\pi in\alpha} - 1) \hat{v}(n) = \hat{u}(n), \quad n \in \mathbb{Z} \setminus \{0\}\]

\[\hat{v}(n) = (e^{2\pi in\alpha} - 1)^{-1} \hat{u}(n) \approx (\{n\alpha\})^{-1} \hat{u}(n)\]

First Problem: \(\alpha\) may be rational.
In Fourier coefficients, (1) becomes

\[(e^{2\pi in\alpha} - 1)\hat{v}(n) = \hat{u}(n), \quad n \in \mathbb{Z} \setminus \{0\}\]

\[\hat{v}(n) = (e^{2\pi in\alpha} - 1)^{-1}\hat{u}(n) \approx (\{n\alpha\})^{-1}\hat{u}(n)\]

First Problem: \(\alpha\) may be rational.

Second Problem: For any irrational \(\alpha\) there are \(\infty\)-many rational \(\frac{p}{q}\) such that

\[|\alpha - \frac{p}{q}| < \frac{1}{q^2}\]

Q: Can we get a lower bound for \(|\alpha - \frac{p}{q}|\)?
Definition

α ∉ ℚ is a Diophantine number if ∃c > 0 and r ≥ 2 such that

\[\left| \alpha - \frac{p}{q} \right| > cq^{-r} \]

for any \(p/q \in \mathbb{Q}, q > 0 \).

Note: Diophantine numbers have full measure.
Definition

$\alpha \notin \mathbb{Q}$ is a Diophantine number if $\exists c > 0$ and $r \geq 2$ such that

$$\left| \alpha - \frac{p}{q} \right| > cq^{-r}$$

for any $p/q \in \mathbb{Q}$, $q > 0$.

Note: Diophantine numbers have full measure.

Assuming α is Diophantine,

$$|\hat{v}(n)| \lesssim_c |n|^{r-1} |\hat{u}(n)|, \quad n \in \mathbb{Z} \setminus \{0\}$$

Consequence: Loss of regularity; $u \in H^k(\mathbb{T}) \Rightarrow v \in H^{k-r+1}(\mathbb{T})$.
Consider the system

\[\dot{x} = Ax, \quad A = \begin{pmatrix} i\omega_1 \\ \vdots \\ i\omega_n \end{pmatrix}, \quad \omega_j \in \mathbb{R} \]

If \(\omega = (\omega_1, ..., \omega_n) \) is rationally independent, solutions given by \(x_j(t) = c_j e^{i\omega_j t} \) are quasi-periodic. Does the periodic solution persist under perturbation?
Perturb the system:

\[\dot{y} = Ay + g(y) \]

where

\[g(y) = \sum_{|k|_1 \geq 2} g_k y^k, \quad k \in \mathbb{N}^n \setminus \{0\} \]

where \(|k|_1 = k_1 + \cdots + k_n \).
Perturb the system:

\[\dot{y} = Ay + g(y) \]

where

\[g(y) = \sum_{|k|_1 \geq 2} g_k y^k, \quad k \in \mathbb{N}^n \setminus \{0\} \]

where \(|k|_1 = k_1 + \cdots + k_n\).

Ansatz for periodic solution:

\[y(t) = u(e^{At}c), \quad u(x) = x + \sum_{|k|_1 \geq 2} u_k x^k \]

Inserting the ansatz into the perturbed equation, we obtain

\[\sum_{|k|_1 \geq 2} (\omega \cdot k - A)u_k x^k = g \left(x + \sum_{|k|_1 \geq 2} u_k x^k \right) \]
In coefficients, we have

\[(i \omega \cdot k - A)u_k = \sum_{|m|_1,|\ell|_1 \geq 2, k_i = m_i \ell_i} g_m u_\ell.\]

So we return to the same problem which can be resolved by imposing a similar Diophantine condition:

\[|\omega \cdot k - \omega_j| \geq \frac{\delta}{|k|_1^\tau}\] (2)

for some \(\delta, \tau > 0\). This set of frequency vectors \(\omega\) satisfying (2) has full measure in \(\mathbb{R}^n\).
Statement of a Problem

- Nonlinear Schrödinger Equation

\[i \partial_t u = \Delta u + \lambda |u|^{2p} u \]
\[x \in \mathbb{T}^d, \ \ t \in \mathbb{R}, \ \ p \in \mathbb{N} \]
Nonlinear Schrödinger Equation

\[i\partial_t u = \Delta u + \lambda |u|^{2p} u \quad (3) \]

\[x \in \mathbb{T}^d, \quad t \in \mathbb{R}, \quad p \in \mathbb{N} \]

Consider the plane wave solution to (3):

\[w_m(x, 0) := \varrho e^{im \cdot x} \]

\[w_m(x, t) = \varrho e^{im \cdot x} e^{i(|m|^2 - \lambda \varrho^2 p) t} \]

Assuming \(u(x, t) \) satisfies (3) and

\[\|\varrho - e^{-im \cdot x} u(x, 0)\|_{H^s(\mathbb{T}^d)} < \varepsilon, \]

what type of stability can we expect?
solution that starts off near the periodic one

periodic solution

we solve for this difference
Definition (Orbital Stability)

A solution $x(t)$ is said to be orbitally stable if, given $\varepsilon > 0$, there exists a $\delta = \delta(\varepsilon) > 0$ such that, for any other solution, $y(t)$, satisfying $|x(t_0) - y(t_0)| < \delta$, then $d(y(t), O(x_0, t_0)) < \varepsilon$ for $t > t_0$.

- For any $M \in \mathbb{N}$
- There exist s_0 and ε_0 so that for any solution u to (3) with $\| \varrho - e^{-im \cdot x} u(x, 0) \|_{H^s(\mathbb{T}^d)} < \varepsilon$, for $\varepsilon < \varepsilon_0$ and $s > s_0$

\[
\inf_{\varphi \in \mathbb{R}} \| e^{-i\varphi} e^{-im \cdot \cdot} w_m(\cdot, t) - e^{-im \cdot \cdot} u(\cdot, t) \|_{H^s(\mathbb{T}^d)} < \varepsilon C(M, s_0, \varepsilon_0)
\]

- For $t < \varepsilon^{-M}$.

First Approach

- Assume $m = 0$
- Translation of (3) by w_0:

$$i \partial_t u = (\Delta + (p + 1)\lambda \varrho^{2p})u + (p\lambda \varrho^{2(p-1)})w_0^2 \bar{u} + \sum_{i=2}^{2p+1} F_i(u, \bar{u}, w_0)$$

(4)

$$i \partial_t u_n = (-|n|^2 + (p + 1)\lambda \varrho^{2p})u_n + (p\lambda \varrho^{2(p-1)})w_0^2 \bar{u}_{-n} + F(u_k, \bar{u}_k, w_0)$$

(5)

- The linear part of (5) is a system with periodic coefficients, so we consider Floquet’s theorem.
Floquet’s Theorem

Theorem (Floquet’s Theorem)

Suppose \(A(t) \) is periodic. Then the Fundamental matrix of the linear system has the form

\[
\Pi(t, t_0) = P(t, t_0) \exp((t - t_0)Q(t_0))
\]

where \(P(\cdot, t_0) \) has the same period as \(A(\cdot) \) and \(P(t_0, t_0) = 1 \).

The eigenvalues of \(M(t_0) := \Pi(t_0 + T, t_0) \), \(\rho_j \), are known as Floquet multipliers and

Corollary

A periodic linear system is stable if all Floquet multipliers satisfy

\[|\rho_j| \leq 1. \]
With \(z_n = e^{-i\lambda \rho^2 p t} u_n \), the linear part of (5) is

\[
i \partial_t \begin{pmatrix} z_n \\ \bar{z}_{-n} \end{pmatrix} = A_n \begin{pmatrix} z_n \\ \bar{z}_{-n} \end{pmatrix}
\]

We then diagonalize

\[
i \partial_t \begin{pmatrix} x_n \\ \bar{x}_{-n} \end{pmatrix} = \begin{pmatrix} \Omega_n & 0 \\ 0 & \Omega_{-n} \end{pmatrix} \begin{pmatrix} x_n \\ \bar{x}_{-n} \end{pmatrix}
\]

where

\[
\Omega_n = \sqrt{|n|^2(|n|^2 + 2p \rho^2 p)}
\]

assuming \(\lambda = -1 \).
Duhamel Iteration Scheme

Duhamel’s Formula:

\[x_n(t) = e^{i\Omega_n t}x_n(0) + \int_0^t e^{i\Omega_n (t-s)}F(x(s))_n \, ds \]

Define the iteration scheme:

\[
\begin{cases}
 x_n(t, k + 1) = x_n(t, 0) + \int_0^t e^{i\Omega_n (t-s)}F(x_n(s, k)) \, ds \\
 x_n(t, 0) := e^{i\Omega_n t}x_n(0, 0)
\end{cases}
\]
Duhamel Iteration Scheme

Duhamel’s Formula:

\[x_n(t) = e^{i\Omega_nt}x_n(0) + \int_0^t e^{i\Omega_n(t-s)}F(x(s))_n \, ds \]

Define the iteration scheme:

\[
\begin{align*}
 x_n(t, k + 1) &= x_n(t, 0) + \int_0^t e^{i\Omega_n(t-s)}F(x_n(s, k)) \, ds \\
 x_n(t, 0) &= e^{i\Omega_nt}x_n(0, 0)
\end{align*}
\]

- This approach is similar to the 19th century approach of expanding the solution in a perturbative series:

\[u(t) = u_0(t) + \varepsilon u_1(t) + \varepsilon^2 u_2(t) + \cdots \]

\(u_k\) being defined recursively.

- This series does not converge, so we should expect a similar phenomenon.
The first step demonstrates issues that this iteration scheme presents us:

Small Model of First Iterate

\[
x_n(t, 1) = x_n(t, 0) + \int_0^t e^{i\Omega_n(t-s)} \sum_{n_1, n_2} x_{n_1}(s, 0)x_{n_2}(s, 0) \, ds \\
= x_n(t, 0) + e^{i\Omega_n t} \sum_{n_1, n_2} x_{n_1}x_{n_2} \int_0^t e^{i(\Omega_{n_1}+\Omega_{n_2}-\Omega_n)s} \, ds \\
= x_n(t, 0) + \sum_{n_1, n_2} x_{n_1}x_{n_2} \frac{e^{i(\Omega_{n_1}+\Omega_{n_2})t} - e^{i\Omega_n t}}{i(\Omega_{n_1} + \Omega_{n_2} - \Omega_n)}
\]
Appearance of small divisors
How do we control the small divisors?

Recall that

$$\Omega_n = \sqrt{|n|^2 (|n|^2 + 2p \varrho^{2p})}$$

and note the pattern

$$\partial_\varrho \Omega_n = \frac{C(n, \varrho)}{\sqrt{|n|^2 + 2p \varrho^{2p}}} = \Omega_n \frac{\tilde{C}(n, \varrho)}{|n|^2 + 2p \varrho^{2p}}$$

$$\partial^2_\varrho \Omega_n = \frac{-C^2(n, \varrho)}{(|n|^2 + 2p \varrho^{2p})^{3/2}} = \Omega_n \frac{-\tilde{C}^2(n, \varrho)}{(|n|^2 + 2p \varrho^{2p})^2}$$

We can conclude that

$$\Omega_{n_1} + \Omega_{n_2} - \Omega_n = \partial_\varrho (\Omega_{n_1} + \Omega_{n_2} - \Omega_n) = \partial^2_\varrho (\Omega_{n_1} + \Omega_{n_2} - \Omega_n) = 0$$

does not occur when \(\varrho \) is restricted to a compact set.
Small Model of Second Iterate

\[x_n(t, 2) = x_n(t, 0) + \int_0^t e^{i\Omega_n(t-s)} \sum_{n_1, n_2} x_{n_1}(s, 1)x_{n_2}(s, 1) \, ds \]

\[= x_n(t, 1) + e^{i\Omega_n t} \sum_{n_1, k_1, k_2} \frac{x_{n_1}x_{k_1}x_{k_2} \int_0^t e^{i(\Omega_{n_1} + \Omega_{k_1} + \Omega_{k_2} - \Omega_n)s} - e^{i(\Omega_{n_1} + \Omega_{n_2} - \Omega_n)s} \, ds}{i(\Omega_{k_1} + \Omega_{k_2} - \Omega_{n_2})} \]

\[+ e^{i\Omega_n t} \sum_{j_1, j_2, k_1, k_2} \frac{x_{j_1}x_{j_2}x_{k_1}x_{k_2} \int_0^t e^{i(\Omega_{j_1} + \Omega_{j_2} + \Omega_{k_1} + \Omega_{k_2} - \Omega_n)s} - \ldots \, ds}{-(\Omega_{j_1} + \Omega_{j_2} - \Omega_{n_1})(\Omega_{k_1} + \Omega_{k_2} - \Omega_{n_2})} \]

\[+ \ldots \]
Issues

- Convergence
- Controlling loss of regularity
- Resonances
- Type of stability
 - Problem at zero mode
A Reduction on the Hamiltonian

\[H := \sum_{k \in \mathbb{Z}^d} |k|^2 |u_k|^2 + \frac{1}{p+1} \sum_{k=1}^{p+1} u_{k_1} \cdots u_{k_{p+1}} \bar{u}_{h_1} \cdots \bar{u}_{h_{p+1}}. \]

(6)

Let \(L := \|u(0)\|_2^2 \), define the symplectic reduction of \(u_0 \):

\[\{ u_k, \bar{u}_k \}_{k \in \mathbb{Z}^d} \rightarrow (L, \nu_0, \{ v_k, \bar{v}_k \}_{k \in \mathbb{Z}^d \setminus \{0\}}), \]

\[u_0 = e^{i\nu_0} \sqrt{L - \sum_{k \in \mathbb{Z}^d} |v_k|^2}, \quad u_k = v_k e^{i\nu_0}, \quad \forall k \in \mathbb{Z}^d \setminus \{0\}. \]
We now diagonalize the quadratic part of the Hamiltonian:

\[H_0 = \sum_{k \in \mathbb{Z}^d \setminus \{0\}} (k^2 + L^p p)|v_k|^2 + L^p p \frac{1}{2}(v_k v_{-k} + \bar{v}_k \bar{v}_{-k}) \]

(7)

which gives

\[H_0 = \sum_{k \in \mathbb{Z}^d} \frac{\Omega_k}{2}(|x_k|^2 + |x_{-k}|^2) \]

(8)

with \(\Omega_k = \sqrt{|k|^2(|k|^2 + 2pL^p)} \).

- It is convenient to group together the modes having the same frequency, i.e. to denote

\[\omega_q := \sqrt{q^2(q^2 + 2pL^p)}, \quad q \geq 1. \]

(9)
Definition (Normal Form)

Let $H = H_0 + P$ where $P \in C^\infty(\mathbb{R}^{2N}, \mathbb{R})$, which is at least cubic such that P is a perturbation of H_0. We say that P is in normal form with respect to H_0 if it Poisson commutes with H_0:

$$\{P, H_0\} = 0$$

Definition (Nonresonance)

Let $r \in \mathbb{N}$. A frequency vector, $\omega \in \mathbb{R}^n$, is nonresonant up to order r if

$$k \cdot \omega := \sum_{j=1}^{n} k_j \omega_j \neq 0 \text{ for all } k \in \mathbb{Z}^n \text{ with } 0 < |k| \leq r$$
Birkhoff Normal Form Theorem in Finite Dimension

Theorem (Moser '68)

Let $H = H_0 + P$ where

- $H_0 = \sum_{j=1}^{N} \omega_j \frac{p_j^2 + q_j^2}{2}$
- $P \in C^\infty(\mathbb{R}^{2N}, \mathbb{R})$ having a zero of order 3 at the origin

Fix $M \geq 3$ an integer. There exists $\tau : U \ni (q', p') \mapsto (q, p) \in V$ a real analytic canonical transformation from a nbhd of the origin to a nbhd of the origin which puts H in normal form up to order M i.e.

$$H \circ \tau = H_0 + Z + R$$

with

1. Z is a polynomial of order r and is in normal form
2. $R \in C^\infty(\mathbb{R}^{2N}, \mathbb{R})$ and $R(z, \bar{z}) = O(\|(q, p)\|^{M+1})$
3. τ is close to the identity: $\tau(q, p) = (q, p) + O(\|(q, p)\|^2)$
Corollary

Assume ω is nonresonant. For each $M \geq 3$ there exists $\varepsilon_0 > 0$ and $C > 0$ such that if $\|(q_0, p_0)\| = \varepsilon < \varepsilon_0$ the solution $(q(t), p(t))$ of the Hamiltonian system associated to H which takes value (q_0, p_0) at $t = 0$ satisfies

$$\|(q(t), p(t))\| \leq 2\varepsilon \text{ for } |t| \leq \frac{C}{\varepsilon^{M-1}}.$$
Consider the ODE

\[i \partial_t x_n = \omega_n x_n + \sum_{k \geq 2} \left(f_k(x) \right)_n \]

With

- Auxiliary Hamiltonian: \(\chi(x) \)
- \(X_\chi \) the corresponding vector field

We note that for any vector field \(Y \), its transformed vector field under the time 1 flow generated by \(X_\chi \) is

\[e^{\text{ad}_{X_\chi}} Y = \sum_{k=0}^{\infty} \frac{1}{k!} \text{ad}_{X_\chi}^k Y \quad (10) \]

where \(\text{ad}_X Y := [Y, X] \).
Iterative Step

- Let \(\chi \) be degree \(K_0 + 1 \)
- Let \(\Phi_\chi(x) \) be the time-1 flow map associated with the Hamiltonian vector field \(X_\chi \).
- Consider the change of variables \(y = \Phi_\chi(x) \)
- Using the identity (10), one obtains

\[
i \partial_t y_n = \omega_n y_n + \sum_{k=2}^{K_0-1} (f_k(y))_n + ([X_\chi, \omega y](y))_n + (f_{K_0}(y))_n + h.o.t.
\]
Plan: choose \(\chi \) and another vector-valued homogeneous polynomial of degree \(K_0, R_{K_0} \), in such a way that we can decompose \(f_{K_0} \) as follows

\[
f_{K_0}(y) = R_{K_0}(y) - [X_\chi, \omega y](y)
\]

(11)

- We can find \(\chi \) so that \(R_{K_0} \) is in the kernel of the following function

\[
ad_\omega(X) := [X, \omega y].
\]

- Any \(Y \in \ker ad_\omega \) is referred to as "normal" or "resonant".
Condition for a monomial, \(y^{\alpha} \bar{y}^{\beta} \partial_{y^{m}}, (\alpha, \beta \in \mathbb{N}^\infty) \) to satisfy \(y^{\alpha} \bar{y}^{\beta} \partial_{y^{m}} \in \ker \text{ad}_{\omega} \):

\[
\text{ad}_{\omega}(y^{\alpha} \bar{y}^{\beta} \partial_{y^{m}}) = [(\alpha - \beta) \cdot \omega - \omega_{m}]y^{\alpha} \bar{y}^{\beta} \partial_{y^{m}}
\]

For individual terms, (11) becomes

\[
R_{\alpha,\beta,m} - (\omega \cdot (\alpha - \beta) - \omega_{m})X_{\alpha,\beta,m} = f_{\alpha,\beta,m}
\]
Appearance of small divisors

- Condition for a monomial, \(y^\alpha \tilde{y}^\beta \partial y_m \), \((\alpha, \beta \in \mathbb{N}^\infty)\) to satisfy
 \[y^\alpha \tilde{y}^\beta \partial y_m \in \ker \text{ad}_\omega: \]
 \[\text{ad}_\omega(y^\alpha \tilde{y}^\beta \partial y_m) = [(\alpha - \beta) \cdot \omega - \omega_m]y^\alpha \tilde{y}^\beta \partial y_m \]

- For individual terms, (11) becomes
 \[R_{\alpha,\beta,m} - (\omega \cdot (\alpha - \beta) - \omega_m)X_{\alpha,\beta,m} = f_{\alpha,\beta,m} \]

- Definition of \(X_\chi \) and \(R_{K_0} \):
 \[R_{\alpha,\beta,m} := f_{\alpha,\beta,m} \quad \text{when} \quad \omega \cdot (\alpha - \beta) - \omega_m = 0 \]
 \[X_{\alpha,\beta,m} := 0 \quad \text{when} \quad \omega \cdot (\alpha - \beta) - \omega_m = 0 \]
 \[X_{\alpha,\beta,m} := \frac{-f_{\alpha,\beta,m}}{(\omega \cdot (\alpha - \beta) - \omega_m)} \quad \text{when} \quad \omega \cdot (\alpha - \beta) - \omega_m \neq 0 \]
In finite dimension,

$$\inf \{ |\omega \cdot (\alpha - \beta) - \omega_m| \mid \omega \cdot (\alpha - \beta) - \omega_m \neq 0 \} > 0$$

Leads to bound on change-of-variables map (symplectomorphism).

Not necessarily true in infinite dimensions.
Nonresonance Condition

Definition (Nonresonance Condition)

There exists $\gamma = \gamma_M > 0$ and $\tau = \tau_M > 0$ such that for any N large enough, one has

$$\left| \sum_{q \geq 1} \lambda_q \omega_q \right| \geq \frac{\gamma}{N^\tau} \quad \text{for } \|\lambda\|_1 \leq M, \quad \sum_{q > N} |\lambda_q| \leq 2 \quad (12)$$

where $\lambda \in \mathbb{Z}^\infty \setminus \{0\}$.

The following generalization of the “non-resonance” result in Bambusi-Grebert holds.

Theorem (Bambusi-Grebert 2006)

For any $L_0 > 0$, there exists a set $J \subset (0, L_0)$ of full measure such that if $L \in J$ then for any $M > 0$ the Nonresonance Condition holds.
Nonresonance Condition

Definition (Nonresonance Condition)

There exists $\gamma = \gamma_M > 0$ and $\tau = \tau_M > 0$ such that for any N large enough, one has

$$\left| \sum_{q \geq 1} \lambda_q \omega_q \right| \geq \frac{\gamma}{N^\tau}$$

for $\|\lambda\|_1 \leq M$, $\sum_{q > N} |\lambda_q| \leq 2$ \hspace{1cm} (12)

where $\lambda \in \mathbb{Z}^\infty \setminus \{0\}$.

The following generalization of the “non-resonance” result in Bambusi-Grebert holds.

Theorem (Bambusi-Grebert 2006)

For any $L_0 > 0$, there exists a set $J \subset (0, L_0)$ of full measure such that if $L \in J$ then for any $M > 0$ the Nonresonance Condition holds.
Recall that $\omega_q = \sqrt{q^2(q^2 + 2p\rho^{2p})}$. For any $K \leq N$, consider K indices $j_1 < \cdots < j_K \leq N$. Then

\[
\begin{vmatrix}
\omega_{j_1} & \omega_{j_2} & \cdots & \omega_{j_K} \\
\frac{d}{dm}\omega_{j_1} & \frac{d}{dm}\omega_{j_2} & \cdots & \frac{d}{dm}\omega_{j_K} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{d^{K-1}}{dm^{K-1}}\omega_{j_1} & \frac{d^{K-1}}{dm^{K-1}}\omega_{j_2} & \cdots & \frac{d^{K-1}}{dm^{K-1}}\omega_{j_K}
\end{vmatrix} \gg N^{-2K^2}
\]

where $m = \rho^{2p}$.
Recall that $\omega_q = \sqrt{q^2(q^2 + 2p\rho^{2p})}$. For any $K \leq N$, consider K indices $j_1 < \cdots < j_K \leq N$. Then

$$\left| \begin{array}{ccc}
\omega_{j_1} & \omega_{j_2} & \cdots & \omega_{j_K} \\
\frac{d}{dm}\omega_{j_1} & \frac{d}{dm}\omega_{j_2} & \cdots & \frac{d}{dm}\omega_{j_K} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{d^{K-1}}{dm^{K-1}}\omega_{j_1} & \frac{d^{K-1}}{dm^{K-1}}\omega_{j_2} & \cdots & \frac{d^{K-1}}{dm^{K-1}}\omega_{j_K}
\end{array} \right| \gtrsim N^{-2K^2}$$

where $m = \rho^{2p}$.

Consequently, for $\alpha > 50r^3$. $\forall \gamma > 0$ small enough, $\exists J_\gamma \subset [m_0, m_1]$ such that for all $m \in J_\gamma$, for all $N \geq 1$,

$$\left| \sum_{j=1}^{N} k_j \omega_j + n \right| \geq \frac{\gamma}{N^\alpha}$$

$\forall k \in \mathbb{Z}^N$ with $0 \neq |k| \leq r$ and $\forall n \in \mathbb{Z}$. Moreover,

$$|[m_0, m_1] \setminus J_\gamma| \lesssim \gamma^{1/r}$$
Definition

For $x = \{x_n\}_{n \in \mathbb{Z}^d}$, define the standard Sobolev norm as

$$\| x \|_s := \sqrt{\sum_{n \in \mathbb{Z}^d} |x_n|^2 \langle n \rangle^{2s}}$$

Define H^s as

$$H^s := \{ x = \{x_n\}_{n \in \mathbb{Z}^d} \mid \| x \|_s < \infty \}$$
Consider the equation

\[i\dot{x} = \omega x + \sum_{k \geq 2} f_k(x). \]

(13)

and assume the nonresonance condition (12). For any \(M \in \mathbb{N} \), there exists \(s_0 = s_0(M, \tau) \) such that for any \(s \geq s_0 \) there exists \(r_s > 0 \) such that for \(r < r_s \), there exists an analytic canonical change of variables

\[y = \Phi^{(M)}(x) \]

\[\Phi^{(M)} : B_s(r) \to B_s(3r) \]

which puts (13) into the normal form

\[i\dot{y} = \omega y + R^{(M)}(y) + \mathcal{X}^{(M)}(y). \]

(14)
Moreover there exists a constant $C = C_s$ such that:

\[
\sup_{x \in B_s(r)} \| x - \Phi^{(M)}(x) \|_s \leq Cr^2
\]

- $R^{(M)}$ is at most of degree $M + 2$, is resonant, and has tame modulus
- the following bound holds

\[
\| \mathcal{X}^{(M)} \|_{s,r} \leq Cr^{M+\frac{3}{2}}
\]
Main Theorem: Statement from FGL '13

Theorem (Faou, Gauckler, Lubich 2013)

Let \(\rho_0 > 0 \) be such that \(1 - 2\lambda \rho_0^2 > 0 \), and let \(M > 1 \) be fixed arbitrarily. There exists \(s_0 > 0 \), \(C \geq 1 \) and a set of full measure \(\mathcal{P} \) in the interval \((0, \rho_0] \) such that for every \(s \geq s_0 \) and every \(\rho \in \mathcal{P} \), there exists \(\varepsilon_0 \) such that for every \(m \in \mathbb{Z}^d \) the following holds: if the initial data \(u(\bullet, 0) \) are such that

\[
\| u(\bullet, 0) \|_{L^2} = \rho \quad \text{and} \quad \| e^{-im \cdot \bullet} u(\bullet, 0) - u_m(0) \|_{H^s} = \varepsilon \leq \varepsilon_0
\]

then the solution of (3) (with \(p = 1 \)) with these initial data satisfies

\[
\| e^{-im \cdot \bullet} u(\bullet, t) - u_m(t) \|_{H^s} \leq C\varepsilon \quad \text{for} \quad t \leq \varepsilon^{-M}
\]
Structure of the cubic case

Let

\[H_c = \int_T (|\partial_x u|^2 + |u|^4) \, dx \]

Theorem (Kappeler, Grebert 2014)

There exists a bi-analytic diffeomorphism \(\Omega : H^1 \rightarrow H^1 \) such that \(\Omega \) introduces Birkhoff coordinates for NLS on \(H^1 \). That is, on \(H^1 \) the transformed NLS Hamiltonian \(H_c \circ \Omega^{-1} \) is a real-analytic function of the actions

\[I_n = \frac{|x_n|^2}{2} \]

for \(n \in \mathbb{Z} \). Furthermore, \(d_0 \Omega \) is the Fourier transform.
Main Theorem: Statement

Theorem (W. 2014)

Let $L_0 > 0$ be such that $1 - 2p\lambda L_0^p > 0$, and let $M > 1$ be fixed arbitrarily. There exists $s_0 > 0$, $C \geq 1$ and a set of full measure \mathcal{P} in the interval $(0, L_0]$ such that for every $s \geq s_0$ and every $L \in \mathcal{P}$, there exists ε_0 such that for every $m \in \mathbb{Z}^d$ the following holds: if the initial data $u(\bullet, 0)$ are such that

$$\|u(\bullet, 0)\|_{L^2}^2 = L \quad \text{and} \quad \|e^{-im \cdot \bullet}u(\bullet, 0) - u_m(0)\|_{H^s} = \varepsilon \leq \varepsilon_0$$

then the solution of (3) with these initial data satisfies

$$\|e^{-im \cdot \bullet}u(\bullet, t) - u_m(t)\|_{H^s} \leq C\varepsilon \quad \text{for} \quad t \leq \varepsilon^{-M}$$
Characterization of $\mathcal{R}^{(M)}$

Proposition

The truncation of (14),

$$i\dot{y} = \omega y + \mathcal{R}^{(M)}(y)$$

can be decoupled in the following way:

$$i\partial_t \begin{pmatrix} y_{n_1} \\ \cdots \\ y_{n_k} \end{pmatrix} = \mathcal{M}_q \begin{pmatrix} y_{n_1} \\ \cdots \\ y_{n_k} \end{pmatrix}$$

(15)

where $q \geq 1$, $\{n_1, \ldots, n_k\} := \{n \in \mathbb{Z}^d : |n| = q\}$, $
\mathcal{M}_q = \mathcal{M}_q(\omega, \{y_j\})$ is a self-adjoint matrix for all t.
Further Questions

- Infinite time result?
- Feasibility of the Floquet/Duhamel iteration
- KAM result
Obstacles

- One parameter family of frequencies
- Repeated frequencies

May be able to overcome this: Bambusi, Berti, Magistrelli

Degenerate KAM theory for PDEs

Thank you for listening