HOMEWORK 5 FOR 18.747, SPRING 2013 DUE FRIDAY, MARCH 15 BY 3PM.

- (1) Show that if char(k) = 0, a homomorphism of algebraic groups over k is an isomorphism iff it is bijective.
- (2) Let $\phi: G \to H$ be a surjective homomorphism of algebraic groups of the same dimension. Assume that G is connected. Prove that the kernel of ϕ is contained in the center of G.
- (3) In this problem we work over a field k of characteristic 2. Let $H \subset SL_2$ be the centralizer of the matrix u, $u_{11} = u_{12} = u_{22} = 1$, $u_{21} = 0$. Check that the Lie algebra of H does not coincide with the fixed subspace of Ad(u) acting on \mathfrak{sl}_2 .
- (4) Show that for any $g \in GL_n$ the Lie algebra of the centralizer of g coincides with the fixed subspace of Ad(g) acting on \mathfrak{gl}_n .
- (5) (Optional) This problem relies on some knowledge of elliptic curves and line bundles.
 - (a) Let E be an elliptic curve. Construct a commutative algebraic group $\tilde{E} \ncong E \times \mathbb{G}_a$ with an onto homomorphism $\tilde{E} \to E$ whose kernel is isomorphic to \mathbb{G}_a .
 - [Hint: Recall that points of E are in bijection with line bundles on E of degree zero. One can construct \tilde{E} together with a bijection between points of E and line bundles on E of degree zero equipped with a flat connection].
 - (b) Assume that char(k) = 0. Check that \tilde{E} is anti-affine, i.e. any global regular function on E is constant.
 - (c) Assume that $k = \mathbb{C}$. Construct an analytic group isomorphism $\tilde{E} \cong (\mathbb{C}^{\times})^2$
 - [Hint: restriction of each character $\tilde{E} \to \mathbb{C}^{\times}$ to the subgroup $\mathbb{G}_a \subset \tilde{E}$ is a function of the form $z \mapsto \exp(az)$ for some $a \neq 0$. If we think of points of \tilde{E} as line bundles with a flat connection, the homorphism sends such a bundle to monodromy of the connection.]
 - (d) Assume that char(k) = p > 0. Construct an onto homomorphism $\tilde{E} \to \mathbb{G}_a^{(1)}$ whose kernel is identified with $E^{(1)}$; here the upper index (1) denotes Frobenius twist.¹
 - [Hint: restriction of the character $\tilde{E} \to \mathbb{G}_a$ to the subgroup $\mathbb{G}_a \subset \tilde{E}$ is given by $z \mapsto az^p + bz$ for some a, b with $a \neq 0$. If we think of points of \tilde{E} as line bundles with a flat connection, the homorphism sends such a bundle to p-curvature of the connection.]

1

¹Frobenius twist of an algebraic variety X is another algebraic variety which has the same set of points and sheaf of regular functions, but the action of the field k of scalars on the sheaf of functions is twisted by Frobenius automorphism $\lambda \mapsto \lambda^p$. Here k is assumed to be perfect of characteristic p > 0.