HOMEWORK 3 FOR 18.747, SPRING 2013 DUE FRIDAY, MARCH 1 BY 3PM.

(1) Let k be a characteristic p field. Let $G \subset GL_{p+1}$ be given by the following

 $g_{ij} = 0 \text{ for } i > j;$

 $g_{ii} = 1;$ $g_{ij} = \frac{1}{(j-i)!}g_{12}^{(j-i)} \text{ when } 0 < j-i < p.$ Set $x = g_{12}, y = g_{1,p+1}$, clearly (x,y) are coordinates on G providing an isomorphism $G \cong \mathbb{A}^2$.

- (a) Check that G is a two dimensional commutative unipotent algebraic group, not isomorphic to the vector group \mathbb{G}_a^2 .
- (b) Construct an onto homomorphism $G \to \mathbb{G}_a$ whose kernel is isomorphic
- (c) (Optional) Consider the map $\pi: G \to G$, $\pi: t \mapsto t^p$. Describe (in coordinates) a homomorphism $V: G \to G$ such that $\pi(x,y) =$
- (d) (Optional) For $\lambda \in k$ let T_{λ} be the endomorphism of G sending (g_{ij}) to $(\lambda^{j-i}g_{ij})$. Describe the subring in the ring End(G) generated by

[This is the ring of second Witt vectors over k].

- (e) (Optional) Let $\phi:(x,y)\to(x^p,y^p)$. Show that ϕ,V and $T_\lambda,\lambda\in k$ generate the ring End(G), and describe this ring explicitly.
- (2) Show that any finite subgroup in \mathbb{G}_a is the kernel of a surjective homomorphism $\mathbb{G}_a \to \mathbb{G}_a$.

[Hint: the famous Artin-Schreier homomorphism $\mathbb{G}_a \to \mathbb{G}_a$, $t \mapsto t^p - t$ may come handy.

(3) Assume that k has characteristic p. Find an example of a three dimensional connected unipotent group such that the adjoint action of the group on its Lie algebra is trivial, but the group is non-commutative.

[Hint: Consider the action of \mathbb{G}_a on \mathbb{G}_a^2 , $t:(x,y)\mapsto (x+t^py^p,y)$.]

- (4) (Optional)
 - (a) Show that a two dimensional unipotent group over a field of characteristic zero is commutative.
 - (b) Let H be the algebraic group over a field k of characteristic p > 2defined as follows. As an algebraic variety $H \cong \mathbb{A}^2$ with multiplication defined by:

$$(x,z) \cdot (y,w) = \left(x + y, z + w + \frac{1}{2}(x^p y - xy^p)\right).$$

Show that this is a two-dimensional noncommutative unipotent group. ¹

¹Some authors call this group a "fake Heisenberg group", see e.g. Boyarchenko, Drinfeld, arXiv:math/0609769, §3.7.