HOMEWORK 5 FOR 18.706, SPRING 2010 DUE WEDNESDAY, MAY 12.

Do 50% of the questions of your choice.

- (1) (Adams operations in K-theory)
 - Let k be a field containing \mathbb{Q} and all roots of unity.
 - (a) Let A be a k-linear abelian category and G be a finite group. Let A^G be the category of objects in A equipped with a G-action.
 - Define a map $\tau_A : K^0(A^G)_k \to K^0(A) \otimes_{\mathbb{Z}} k[G]^G$ where $k[G]^G$ is the space of k-valued class functions on G and $K^0(A^G)_k$ stands for $K^0(A^G) \otimes_{\mathbb{Z}} k$. The map τ_A should fit in the natural commutative diagram for a k-linear functor $A \to B$ and it should be an isomorphism when A is the category of finite dimensional k-vector spaces.

For $g \in G$ let $\tau_A^g : K^0(A^G)_k \to K^0(A)_k$ be the composition $(Id \otimes ev|_g) \circ \tau_A$ where $ev|_g : k[G]^G \to k$ is the map of evaluation on the conjugacy class of g.

(b) Let $R \supset k$ be a commutative ring and A be the category of finitely generated projective R-modules.¹

For $M \in A$ the tensor product $M^{\otimes n} = M \otimes_A M \otimes \cdots \otimes_A M$ (where the number of factors in the RHS is n) carries an action of the symmetric group S_n by permutation of the factors. Thus $M^{\otimes n}$ acquires the structure of an object in $R - mod^{S_n}$.

Let $\sigma \in S_n$ be a long cycle.

Show that the $M \mapsto \tau_{R-mod}^{\sigma}([M^{\otimes n}])$ is additive on short exact sequences (unlike the map $M \mapsto [M^{\otimes n}]$). Thus it defines a homomorphism² $K^0(R-mod)_k \to K^0(R-mod)_k$.

- (2) (Identities satisfied by characters)
 - (a) Let A be an algebra over a field k of characteristic zero, and $\chi : A \to k$ be the character (trace functional) of an *n*-dimensional representation. Show that χ satisfies the following identity.

For $a_0, \ldots, a_n \in A$ and $\sigma \in S_{n+1}$ set $\chi_{\sigma}(a_0, \ldots, a_n) = \prod \chi(a_{i_1}a_{i_2} \ldots a_{i_s})$ where (i_1, \ldots, i_s) runs over the cycles of σ .

Show that $\sum_{\sigma \in S_{n+1}} \epsilon(\sigma) \chi_{\sigma}(a_0, \ldots, a_n) = 0$ for all $a_0, \ldots, a_n \in A$; here $\epsilon(\sigma) = \pm 1$ depending on the parity of σ .

Write down the identity explicitly for n = 1, 2.

¹This category A is not an abelian but rather an *exact* category. We don't discuss axiomatics of exact categories, it suffices to remark that the notion of an exact sequence in A has a clear meaning, thus the usual definition of K^0 applies to A, A^G .

²A similar definition applies when modules over a commutative ring R are replaced by vector bundles on a topological space, or algebraic vector bundles on an algebraic variety. The resulting endomorphisms of K^0 are known as *Adams operations*.

HOMEWORK 5 FOR 18.706, SPRING 2010 DUE WEDNESDAY, MAY 12.

2

- (b) Let G be a finite group. Show that a map $\chi: G \to k$ is a character of an *n*-dimensional isotypic representation iff it satisfies the following identity $\rho(g_1)\rho(g_2) = \frac{n}{|G|} \sum_{x \in G} \rho(xg_1x^{-1}g_2)$. (A representation is isotypic if it is a sum of several copies of the same irreducible representation.) [Hint: The key step is to show that the identity holds for irreducible characters. Write $Tr(g_1g_2) = Tr(g_1 \otimes g_2 \circ \sigma)$ where σ switches the factors in $V \otimes V$, then check that averaging σ under conjugations by elements of G acting on the first multiple gives $\frac{1}{n}Id$.]
- (3) Prove that if $s \in R$ is regular and ad nilpotent then $GK \dim R[s^{-1}] = GK \dim(R)$.
- (4) Check that the algebra described in problem 7,³ pset 2, is a Koszul quadratic algebra with $A^! \cong A$.
- (5) (Hochschild homology and cohomology.) Let A be an associative algebra over a field k.

The spaces $\operatorname{Ext}_{A\otimes A^{op}}^{i}(A, M)$ and $\operatorname{Tor}_{i}^{A\otimes A^{op}}(A, M)$, for a given A-bimodule M are called the Hochschild cohomology and homology spaces of A with coefficients in M, respectively, and denoted $HH^{i}(A, M)$ and $HH_{i}(A, M)$. [When M is not mentioned in the notation and/or wording, it is usually assumed that M = A is the regular bimodule].

- (a) Show that $HH^0(A)$ is the center of A, $HH_0(A) = A/[A, A]$ is the cocenter, $HH^1(A)$ is the space of derivations of A modulo inner derivations (i.e. commutators with an element of A).
- (b) Show that for any A-modules M, N there is a natural action of the algebra $HH^*(A)$ on $Ext^*(M, N)$. More precisely, let \mathcal{M} be a category defined as follows: objects of \mathcal{M} are A-modules and $Hom_{\mathcal{M}}(M, N) = Ext^*(M, N)$. Then there exists a natural homomorphism from $HH^*(A)$ to the graded center of \mathcal{M} ; i.e. HH^{even} maps to endomorphisms of $Id_{\mathcal{M}}$ while for n odd HH^n maps to $Ext^n(M, M)$ for all $M \in \mathcal{M}$ so that for all $h \in Ext^m(M, N)$ the natural diagram commutes if m is even and commutes after multiplication of one of the arrows by -1 otherwise.
- (c) Let A_0 be an algebra over a field k. An *n*-th order deformation of A_0 is an associative algebra A over $k[t]/t^{n+1}$, free as a module over $k[t]/t^{n+1}$, together with an isomorphism of k-algebras $f : A/tA \to A_0$. Two such deformations (A, f) and (A', f') are said to be equivalent if there exists an algebra isomorphism $g : A \to A'$ such that f'g = f. Show that equivalence classes of first order deformations are parametrized by $HH^2(A_0, A_0)$.
- (d) Show that if HH³(A₀) = 0 then any n-th order deformation can be lifted to (i.e., is a quotient by tⁿ⁺¹ of) an n + 1-th order deformation.
 (e) In 5e,5f k can be assumed to have characteristic zero.
- Compute Hochschild cohomology of the polynomial algebra $A_0 = Sym(V)$ where V is a finite dimensional vector space over k. More precisely, show that it is isomorphic to the space of polynomial polyvector fields on the flat space V^* . [Hint: do NOT was the bar complex]

[Hint: do NOT use the bar complex]

³This algebra plays a role in representation theory as it controls the category of highest weight modules for the Lie algebra sl(2).

HOMEWORK 5 FOR 18.706, SPRING 2010

- (f) According to the above, a first order deformation of $A_0 = Sym(V)$ is determined by a bivector field $\alpha \in Sym(V) \otimes \wedge^2 V^*$. This bivector field defines a skew-symmetric bilinear binary operation on A_0 , given by $\{f,g\} = (df \otimes dg)(\alpha)$. Show that the first order deformation defined by α lifts to a second order deformation if and only if this operation is a Lie bracket (satisfies the Jacobi identity). In this case α is said to be a Poisson bracket.
- (g) Let $A = k \langle V \rangle / (I), I \subset V \otimes V$ be a Koszul quadratic algebra. Then the homomorphism $HH^*(A) \to A^! = Ext^*_A(k,k)$ defined in 5b induces an isomorphism $\bigoplus HH^n(A)_{(-n)} \to Z(A^!)$, while $HH^i(A)_{(j)} =$

0 for j < -i. Here Z stands for supercenter:

 $Z(A^{!})^{i} = \{ a \in (A^{!})^{i} \mid ab = (-1)^{ij} ba \forall b \in (A^{!})^{j} \}.$

[Hint: Show that the *i*-th term in the minimal resolution for the regular bimodule over A has the form $((A^!)^i)^* \otimes (A \otimes A^{op})$ and identify a component of the differential in the corresponding complex for $HH^*(A)$ with the map $(A^!)^i \to V \otimes (A^!)^{i+1}$ obtained from the supercommutator map $V^* \otimes (A^!)^{i} \to (A^!)^{i+1}$ by "lowering the index".]

- (h) Let $a \in Z((A^{!}))^{2}$ and let $h_{a} \in HH^{2}(A)$ be the corresponding element. Show that the first order deformation corresponding to h_{a} is isomorphic to the algebra over $k[t]/t^{2}$ with the space of generators V and relations i - (a, i)t, $i \in I$; here (a, i) is the pairing of $a \in (A^{!})^{2} = I^{*}$ and $i \in I$.
- (i) (*) Prove⁴ that the deformation in the previous part is unobstructed (to all orders).
- (6) (GK dimension does not behave well on short exact sequences)

Show that the following provides an example of a PI algebra R, an R-module M with a submodule N, s.t. $GK \dim(N) = GK \dim(M/N) = 1$, $GK \dim(M) = 2$.

Set $R = \mathbb{C}\langle x, y \rangle / yx = 0$, let M have two generators α, β subject to relations: $x^{n+1}y^n\alpha = 0$ and $xy^n\beta = 0$ unless n is a square m^2 in which case $xy^n\beta = xy^m\alpha$. Let $N = R\beta$.

Check that R satisfies the identity $[a, b]^2 = 0$, thus it is PI.

⁴This proof may require some theory which was not discussed in class.