HOMEWORK 4 FOR 18.706, SPRING 2010 DUE WEDNESDAY, APRIL 21.

- (1) Prove that a prime PI algebra with an identity of degree d has left (or right) uniform rank less than d.
- (2) Let $A = k\langle x, y \rangle / xy yx = 1$ be the Weyl algebra over an algebraically closed field of characteristic p > 0, and M be a finitely generated A-module of uniform rank d.
 - (a) Assume that M is torsion free. Show that

$$\min_{a,b \in k} (\dim(M/(x^p - a, y^p - b))) = p^2 d.$$

- (b) Suppose that $y^p M = 0$ but M is torsion free over k[x]. Show that $\min_{a \in k} (\dim(M/(x^p a))) = pd.$
- (3) Let R, S be rings where R is commutative. Suppose that $Mat_n(R) \cong Mat_n(S)$. Show that S is commutative and deduce that $R \cong S$. [Hint: apply the standard identity for suitable arguments including ae_{11} ,

[Hint: apply the standard identity for suitable arguments including ae_{11} , be_{11} .]

- (4) Check that a \mathbb{Q} algebra satisfying S_{2n+1} also satisfies S_{2n} .
- (5) Classify irreducible (finite dimensional) representations of U(sl(2), k) where k is algebraically closed of characteristic p > 0.
- (6) Show that U(sl(2), k) is a PI algebra iff the field k has positive characteristic.

7) Let
$$\mathfrak{g} = gl(n, \mathbb{Q}), G = GL(n, \mathbb{Q}).$$
 Define $\sigma_k : \Lambda^{2k-1}(\mathfrak{g}) \to \mathbb{Q}$ by
 $x_1 \wedge x_2 \cdots \wedge x_{2k-1} \mapsto \sum (-1)^{|s|} Tr(x_{s(1)} \cdots x_{s(2k-1)}).$

(a) Show that $\sigma_k = 0$ iff k > n.

(7

(b) (*) Prove¹ that the algebra $\Lambda(\mathfrak{g}^*)^G$ is a free graded commutative algebra generated by $\sigma_1, \ldots, \sigma_n$.

¹A standard short proof relies on the theory identifying $\Lambda(\mathfrak{g}^*)^G \otimes_{\mathbb{Q}} \mathbb{C}$ with topological cohomology $H^*(U(n), \mathbb{C})$ where U(n) is the unitary group considered as a topological space. A purely algebraic proof would be more befitting this course, but it may be more tedious to find.