HOMEWORK 3 FOR 18.706, SPRING 2012 DUE WEDNESDAY, MARCH 21.

- (1) Let \mathcal{A} be the category of finitely generated modules over $\mathbb{C}[x]$.
 - (a) Prove that \mathcal{A}^{op} is not equivalent to the category of finitely generated modules over any algebra.
 - (b) Give an example of a Serre subcategory $\mathcal{B} \subset \mathcal{A}$, so that both \mathcal{B} and \mathcal{A}/\mathcal{B} are equivalent to its opposite category.
- (2) Let \mathcal{A} be the category of vector spaces over a field k which are at most countably dimensional, and let \mathcal{B} be the Serre subcategory of finite dimensional vector spaces. Prove that the set of isomorphism classes of objects in \mathcal{A}/\mathcal{B} has two elements. Show that the algebra of endomorphisms of a nonzero object in \mathcal{A}/\mathcal{B} is simple.
- (3) Let Γ be a finite group acting on a ring R by automorphisms. Then the smash product¹ $\Gamma \# R$ or $\Gamma \ltimes R$ is the abelian group $\bigoplus_{\gamma \in \Gamma} R$ with multiplication

given by: $(r_{\gamma_1})(r'_{\gamma_2}) = r\gamma_1(r')_{\gamma_1\gamma_2}$ in the self-explanatory notation. Suppose that R is simple and |G| is invertible in R. Suppose that one the following two conditions holds.

- (a) No nontrivial element $\gamma \in \Gamma$ acts by an inner automorphism of R.
- (b) The element $\gamma \in \Gamma$ acts by conjugation by an invertible element $r_{\gamma} \in R$, where the elements $r_{\gamma} \in R$ are linearly independent over the center of R.

Prove that the functor $M \mapsto M^{\Gamma}$ is an equivalence between the category of $\Gamma \# R$ -modules and of R^{Γ} -modules.

(4) Let k be a field and define the Weyl algebra

 $\mathbf{W}_n = k \langle x_1, \dots, x_n, y_1, \dots, y_n \rangle / (y_i x_j - x_j y_i - \delta_{ij}, y_i y_j - y_j y_i, x_i x_j - x_j x_i).$ (a) Prove that monomials $x^I y^J$ form a basis of \mathbf{W}_n .

- (b) Prove that \mathbf{W}_n is simple iff k is of characteristic zero.
- (c) Define a natural action of Sp(2n,k) on \mathbf{W}_n . For a finite subgroup $\Gamma \subset Sp(2n)$ show that \mathbf{W}_n^{Γ} is Morita equivalent to $\Gamma \# \mathbf{W}_n$ if k is of characteristic zero.
- (d) Suppose that $\Gamma \subset Sp(2n,\mathbb{Z})$, i.e. Γ acts on a lattice preserving a nondegenerate skew-form. For a field k consider the composed map $\Gamma \to Sp(2n,\mathbb{Z}) \to Sp(2n,k)$ where the second arrow comes from tensoring the lattice by k. Show that for almost all p we have Morita equivalence $\mathbf{W}_{n,k}^{\Gamma} \sim \Gamma \# \mathbf{W}_{n,k}$ for all fields k of characteristic p.
- (e) (Optional) Consider the standard skew form on \mathbb{Z}^{2n} given by a block diagonal matrix of n identical 2×2 blocks ($\Omega_{2i,2i-1} = 1 = -\Omega_{2i-1,2i}$ for i = 1, ..., n, and the other entries are zero). Let $\Gamma = S_n$ acting on \mathbb{Z}^{2n} by permuting the blocks. Find an explicit bound on p satisfying the condition in the previous question.

 $^{^{1}}$ I prefer the notation which can be described as "semi-tensor product" but I don't know how to reproduce it in LaTeX!

HOMEWORK 3 FOR 18.706, SPRING 2012 DUE WEDNESDAY, MARCH 21.

 $\mathbf{2}$

(5) Let $A = \bigoplus_{n=0}^{\infty} A_n$ be a graded algebra over a field k with finite dimensional graded component. Define the Cartan matrix $C \in Mat_d(Z[[t]])$ by $C_{i,j} = \sum t^n \dim Hom(P_i, P_j(n))$. Here d is the number of isomorphism classes of irreducible modules concentrated in graded degree zero, P_i are the projective covers of those irreducibles and M(n) for a graded module M denotes the module M with shifted grading: $M_m(n) = M_{m+n}$.

Assume that A is of finite homological dimension. Prove that det(C) is the Taylor series of a nonzero rational function in t.