HOMEWORK 9 FOR 18.745, FALL 2012 DUE FRIDAY, NOVEMBER 9 BY 3PM.

The base field is algebraically closed of characteristic zero and Lie algebras and their representations are finite dimensional unless stated otherwise.

(1) For a semi-simple Lie algebra \mathfrak{g} let G be the group of automorphisms of \mathfrak{g} generated by elements of the form $\exp(ad(x))$, $x \in \mathcal{N}$, where $\mathcal{N} \subset \mathfrak{g}$ is the set of nilpotent element.

Let $\mathfrak{g} = \mathfrak{sl}_n$ and let the automorphism ι be given by $\iota(x) \mapsto -x^t$, where x^t denotes the transposed matrix. Show that $\iota \in G$ iff n = 2.

- [Hint: $\iota \notin G$ for n > 2 can be deduced from the fact that the tautological *n*-dimensional representation of \mathfrak{sl}_n is not isomorphic to its dual].
- (2) ¹ Let W be the Weyl group of a root system $\Sigma \subset E$.
 - (a) Show that $-Id_E \in W$ iff Σ contains an orthogonal basis of E. [Hint: use that for any vector in $v \in E$ the stabilizer $Stab_W(v)$ is generated by reflections at root hyperplanes for roots orthogonal to v. Then apply induction in dim(V).]

(b) For which classical algebras do the equivalent conditions from (a) hold?

- (3) It is easy to see that for a non-simply root system the set of long roots also forms a root system.
 - (a) For each non-simply laced irreducible root system of classical type determine the isomorphism class of the root system formed by long roots in Σ .
 - (b) (Optional) Do the same for all irreducible non-simply laced root systems.

¹This problem is related to the previous one in the following way: in fact, the equivalent conditions in (a) hold for the root system of a semi-simple Lie algebra \mathfrak{g} iff every representation of \mathfrak{g} is isomorphic to its dual.