HOMEWORK 8 FOR 18.745, FALL 2012 DUE FRIDAY, NOVEMBER 2 BY 3PM.

The base field is algebraically closed of characteristic zero and the Lie algebras are finite dimensional unless stated otherwise.

- (1) Let \mathfrak{t} be a maximal toral subalgebra in a semisimple Lie algebra \mathfrak{g} . Let $\Sigma = \Sigma(\mathfrak{g}) = \{\alpha \in \mathfrak{t}^* | \alpha \neq 0 \& \mathfrak{g}_{\alpha} \neq 0\}$, so that, as has been shown in class, $\Sigma \subset E := \mathbb{Q} \cdot \Sigma \otimes_{\mathbb{Q}} \mathbb{R}$ is a root system, where the form on E comes from the Killing form on \mathfrak{g} .
 - (a) Recall that for every $\alpha \in \Sigma$ we have an \mathfrak{sl}_2 triple $e_{\alpha} \in \mathfrak{g}_{\alpha}$, $f_{\alpha} \in g_{-\alpha}$, $h_{\alpha} \in \mathfrak{t}$. Set $\Sigma' = \{h_{\alpha} \mid \alpha \in \Sigma\}$. Show that $\Sigma' \subset \mathbb{Q} \cdot \Sigma' \otimes_{\mathbb{Q}} \mathbb{R} \cong E^*$ is also a root system.
 - (b) Let $\mathfrak{g}=\mathfrak{sp}_6$. The root system Σ' is not isomorphic to Σ , but it is isomorphic to $\Sigma(\mathfrak{g}')$ for another semi-simple Lie algebra \mathfrak{g}' . Describe \mathfrak{g}' and prove this statement.

[Here we say that two irreducible root systems $\Sigma_1 \subset E_1$, $\Sigma_2 \subset E_2$ are isomorphic if there exists an isomorphism $\phi : E_1 \cong E_2$ sending Σ_1 to Σ_2 and satisfying $(\phi(x), \phi(y)) = C(x, y)$ for some constant c].

[Hint: You may want to check that Σ' is isomorphic to the root system $\Sigma = \{\frac{\alpha}{(\alpha,\alpha)} \mid \alpha \in \Sigma\}.$

- (2) Check that for any nontrivial representation of \mathfrak{sl}_2 the corresponding trace form is nondegenerate.
- (3) Let \mathfrak{g} be a semi-simple Lie algebra and $x \in \mathfrak{g}$ be a semi-simple element. Show that the centralizer of x is a reductive Lie algebra.

[Hint: Let $\mathfrak t$ be a maximal toral subalgebra containing x. Then the centralizer is the sum of $\mathfrak t$ and $\mathfrak g_\alpha$ for α such that $\alpha(x)=0$. Recall Cartan criterion and use the previous problem to show that the kernel of the Killing form of the centralizer is contained in the subspace of $y \in \mathfrak t$, s.t. $\alpha(y)=0$ for α as above.]

- (4) (Optional) Let \mathfrak{g} be any Lie algebra.
 - (a) Show that the tensor product of two semi-simple ${\mathfrak g}$ modules is semi-simple.
 - (b) Let \mathfrak{k} be the intersection of kernels of all irreducible representations of \mathfrak{g} . Show that $\mathfrak{g}/\mathfrak{k}$ is reductive, and that it is a maximal reductive quotient of \mathfrak{g} (i.e. for any ideal \mathfrak{k}' in \mathfrak{g} such that $\mathfrak{g}/\mathfrak{k}'$ is reductive we have: $\mathfrak{k} \subset \mathfrak{k}'$).

[Hint: use the optional problem from the previous problem set.]

(5) (Optional) Let \mathfrak{g} be a Lie algebra over \mathbb{R} . Show that the Killing form of \mathfrak{g} can not be positive definite.¹

[Hint: Pick $x \in \mathfrak{g}$ and consider the eigenvalues of ad(x) acting on $\mathfrak{g} \otimes \mathbb{C}$. If there exists an eigenvalue with a nonzero real part deduce that \mathfrak{g} contains and ad nilpotent element y, then $\kappa(y,y)=0$. Otherwise all eigenvalues of ad(x) are purely imaginary, so $kappa(x,x) \leq 0$.]

1

¹It may however be negative definite.