HOMEWORK 7 FOR 18.745, FALL 2012 DUE FRIDAY, OCTOBER 26 BY 3PM.

The base field is algebraically closed of characteristic zero and the Lie algebras are finite dimensional unless stated otherwise.

- (1) Let $C \in U(\mathfrak{sl}_n)$ be the Casimir element corresponding to the Killing form. How does C act in the tautological representation $V = k^n$?
- (2) (Higher Casimir elements)¹
 - (a) (Optional) Fix d > 0. Show that the element $C_d \in U(\mathfrak{gl}_n)$ given by:

$$C_d = \sum_{i_1,\dots,i_d} E_{i_1i_2} E_{i_2i_3} \cdots E_{i_di_2}$$

is central.

[Hint: Degree d symmetric tensors can be identified with polynomial functions on the dual space. Identifying $\mathfrak{g} = \mathfrak{gl}_n$ with \mathfrak{g}^* by means of the trace form, C_d gets identified with the polynomial $A \mapsto Tr(A^d)$]

- (b) Let $V = k^3$ be the tautological representation of \mathfrak{sl}_3 , extend it to a representation of \mathfrak{gl}_3 so that scalar matrices act by zero. Show that C_2 acts by the same scalar on V and on V^* , while C_3 acts on these two representations by different scalars. Compute these scalars.
- (3) Let $e \in sl_n$ be the matrix with $e_{i,i+1} = 1$, $i = 1, \ldots, n-1$ and $e_{i,j} = 0$ for $j \neq i+1$.
 - (a) Show that e can be uniquely completed to an \mathfrak{sl}_2 triple (e, h, f) so that h is diagonal. Compute h, f.
 - (b) Find a basis in the centralizer of e in \mathfrak{sl}_n and describe the isomorphism class of \mathfrak{sl}_n as a module over \mathfrak{sl}_2 acting by the adjoint representation restricted to the span of e, h, f (i.e. find n_1, \ldots, n_k so that $\mathfrak{sl}_n \cong V_{n_1} \oplus \cdots \oplus V_{n_k}$).
 - (c) Let n = 3, and let h' = h + n where $n_{i,j} = 1$ for i < j and $n_{i,j} = 0$ for $i \ge j$. Find an invertible matrix g such that $gh'g^{-1} = h$.

[You can give the answer as a product of exponents of nilpotent matrices, you don't have to evaluate the product].

(4) (Optional) Show that for any Lie algebra \mathfrak{g} the radical of \mathfrak{g} acts by a scalar operator in any irreducible representation of \mathfrak{g} .

[Hint: Let \mathfrak{r} be the radical of \mathfrak{g} and V an irreducible representation. The key step is to show that $[\mathfrak{g}, \mathfrak{r}]$ acts on V by zero. Deduce from Lie Theorem that there exists a vector in V which is an eigenvector for all $x \in \mathfrak{r}$, on this vector \mathfrak{r}' acts by zero; hence it acts by zero on the subrepresentation generated by v, which is the whole V. Now we can assume that \mathfrak{r} is abelian; check then that \mathfrak{g} preserves generalized eigenspaces of each element in \mathfrak{r} .

¹This problem illustrates the following point. For $\mathfrak{g} = \mathfrak{sl}_2$ we have proven splitting of a short exact sequence $0 \to L_1 \to M \to L_2 \to 0$ where L_1 , L_2 are nonisomorphic irreducible modules by observing that Casimir element acts on L_1 , L_2 by distinct scalars. For other semi-simple Lie algebras the Casimir element may act by the same scalar on two given representations L_1 , L_2 , but one can always find some central element in the enveloping algebra which acts by distinct ones.

2 HOMEWORK 7 FOR 18.745, FALL 2012 DUE FRIDAY, OCTOBER 26 BY 3PM.

Since V is irreducible, each element in \mathfrak{r} has only one eigenvalue. Considering trace conclude that each element in $[\mathfrak{g}, \mathfrak{r}]$ acts nilpotently. By Engel's Theorem $[\mathfrak{g}, \mathfrak{r}]$ kills some subspace in V, which has to be invariant under \mathfrak{g} , hence coincides with V. Now we know that $[\mathfrak{g}, \mathfrak{r}]$ acts by zero, and the statement follows from Schur Lemma.]