HOMEWORK 5 FOR 18.745, FALL 2012 DUE FRIDAY, OCTOBER 12 BY 3PM.

The base field is algebraically closed of characteristic zero unless stated otherwise.

(1) Let V, W be irreducible representations of \mathfrak{sl}_2 , $\dim(V) = 3$, $\dim(W) = 10$. Describe the summands in the decomposition $V \otimes W \cong \oplus V_{n_i}$ into a sum of irreducible modules, and write down the images of the highest weight vectors in V_{n_i} under that isomorphism.

[The answer should be given as a linear combination of products of elements in the standard basis of V, W].

- (2) Let k be a characteristic zero field (not necessarily algebraically closed).
 - (a) Show that a simple Lie algebra of dimension three is isomorphic to $\mathfrak{so}(V)$ for some three dimensional vector space with a nondegenerate symmetric bilinear form.

[Hint: use adjoint representation and the Killing form].

- (b) Check that for three dimensional spaces V, V' equipped with quadratic forms we have $\mathfrak{so}(V) \cong \mathfrak{so}(V')$ iff there exists an isomorphism $V \cong V'$ carrying the form on V to one proportional to the form on V'. [Hint: $\mathfrak{so}(V) \cong \Lambda^2 \cong V^*$ for a three dimensional space V].
- (c) (Optional) Check that there are exactly two isomorphism classes of three dimensional simple Lie algebras over \mathbb{R} : $\mathfrak{sl}_2(\mathbb{R})$ and (\mathbb{R}^3, \times) where \times denotes vector product as defined in elementary multivariable calculus.

[You can use the standard properties of vector product stated in calculus textbooks.]

(3) Recall that up to an isomorphism and scaling there exist three distinct nondegenerate quadratic forms on $V = \mathbb{R}^4$: $x^2 + y^2 + z^2 + t^2$, $x^2 + y^2 + z^2 - t^2$ and $x^2 + y^2 - z^2 - t^2$. Show that $\mathfrak{so}(V)$ is simple in exactly one of the three cases.

[Hint: you can use that $\mathfrak{so}(V \otimes \mathbb{C}) \cong \mathfrak{sl}_2(\mathbb{C}) \times \mathfrak{sl}_2(\mathbb{C})$ contains exactly two nonzero proper ideals, so it remains to see when one of these two is defined over \mathbb{R}].

(4) (Optional) [Lefschetz \mathfrak{sl}_2] Let V be a symplectic vector space, let $\omega \in \Lambda^2(V^*)$ be the symplectic form. Let $\varpi \in \Lambda^2(V)$ be the corresponding form on V^* . Set $\Lambda V = \bigoplus_i \Lambda^i(V)$, $\Lambda V^* = \bigoplus_i \Lambda^i(V^*)$ and define operators $e: \Lambda V \to \Lambda V$, $e: x \mapsto \omega \wedge x$, $e': \Lambda V^* \to \Lambda V^*$, $e': y \mapsto \varpi \wedge y$. Using the standard isomorphism $\Lambda^i(V)^* \cong \Lambda^i(V^*)$ define $f: \Lambda V \to \Lambda V$ as the operator adjoint to e'. Check that e, f generate an action of \mathfrak{sl}_2 on ΛV . Describe the action of h and the summands in the decomposition of ΛV into a sum of irreducible modules.

1