MATH 18.726, SPRING 2015 - PROBLEM SET # 7

- (1) The Grassmann variety Gr(r, n) (which we will consider as a scheme over a field k) is characterized as follows: for a scheme X over k we have a canonical (functorial) identification between Hom(X, Gr(r, n)) and the set of pairs (\mathcal{E}, p) , where \mathcal{E} is a locally free coherent sheaf of rank r on X and p is a surjective map $\mathcal{O}_X^{\oplus n} \to \mathcal{E}$.
 - (a) Assuming existence of Gr(r, n) use the *r*-th exterior power of *p* to construct a morphism $Gr(r, n) \to \mathbb{P}^N$ where $N = \binom{n}{r} 1$.
 - (b) Assuming furthermore that the map you constructed is a closed embedding (it is called *Plücker embedding*) construct a map from the blow up of diagonal in $(\mathbb{P}^n)^2$ to Gr(2, n+1) sending a pair of distinct points to the line passing through them.
- (2) Let π be the map from the blow up of a point on \mathbb{A}^n to \mathbb{A}^n . Describe the coherent sheaf $\pi^*(J)$, where J is the ideal sheaf of the point.
- (3) Prove that the deformation to normal cone to a closed scheme Z in an affine scheme X can be also described as the complement to the strict transform of $X \times \{0\}$ in the blow up of $X \times \mathbb{A}^1$ along $Z \times \{0\}$.
- (4) Let X be a smooth degree 4 surface in \mathbb{P}^3 . [This is an example of a K3 surface]. Compute the dimensions of $H^1(\mathcal{O}_X)$, $H^2(\mathcal{O}_X)$ and $H^1(\Omega^1_X)$. [In view of strong Lefschetz theorem and Serre duality this provides full information on dimension of cohomology of $X(\mathbb{C})$
- (5) Problem 8.6 in Harthshorne II.8.