(1) Let Z be an irreducible closed subset in an algebraic variety X. Show that if $\dim(Z) = \dim(X)$ then Z is a component of X.

(2) Let Y be a closed subvariety of dimension r in \mathbb{P}^n.

(a) Suppose that Y can be presented as the set of common zeroes of q homogeneous polynomials. Show that $r \geq n - q$.

If Y can be presented as the set of common zeroes of q homogeneous polynomials with $q = n - r$ we say that Y is a set-theoretic complete intersection.

If moreover the ideal I_Y can be generated by $n - r$ homogeneous polynomials, then Y is called a (strict) complete intersection.

(b) Show that every irreducible closed subvariety in \mathbb{P}^n is a component in a set theoretic complete intersection of the same dimension.

[Hint: use induction to construct homogeneous polynomials $P_1, P_2, \ldots, P_{n-r}$, such that the set of common zeroes of P_1, \ldots, P_i has dimension $n - i$ and contains our subvariety].

(c) Show that the twisted cubic curve in \mathbb{P}^3 (see problem 2 of problem set 2) is a set theoretic complete intersection.

(d) (Optional bonus problem) Show that the twisted cubic curve in \mathbb{P}^3 is not a strict complete intersection.

(3) Let C be a curve in \mathbb{P}^2, x be a point in C and L a line passing through x. Let m be the multiplicity of C at x and M the multiplicity of intersection of C and L at x. Show that $m \leq M$ and that for given C, x the equality $m = M$ holds for all but finitely many lines L as above.

(4) Prove Bezout Theorem for two curves of degrees d_1, d_2 in \mathbb{P}^2 with no common components

(a) Assuming $d_1 = 1$.

(b) Assuming $d_1 = 2$ and the first curve is irreducible; you can also assume that characteristic of the base field is different from two.

[Hint: first show that in a special case the multiplicity of intersection of two curves can be interpreted as follows. Assume that the first curve X is isomorphic to \mathbb{A}^1 and let $f : \mathbb{A}^1 \to X$ be the isomorphism. Let P be the equation of the second curve Y. Then the multiplicity of intersection of X and Y at $x = f(a)$ is the multiplicity of a as a root of the polynomial in one variable $Q(t) = P(f(t))$. Now use the isomorphism of the first curve with \mathbb{P}^1, choose coordinates so that the infinite line does not contain intersection points and recall a familiar fact about polynomials in one variable].

(5) (Optional bonus problem) Recall from the lecture that Grassmannian $Gr(2,4)$ is isomorphic to a quadric in \mathbb{P}^5. Use this to show that given four lines in \mathbb{P}^4, the number of lines intersecting each of the four lines is either infinite or equal to one or two.
[Hint: Check that the for a line \(L \subset \mathbb{P}^3 \) the set of lines intersecting \(L \) is parametrized by \(\text{Gr}(2, 4) \cap H \) for a hyperplane \(H \subset \mathbb{P}^5 \), thus the answer is the number of points in the intersection \(L \cap \text{Gr}(2, 4) \) where \(L \subset \mathbb{P}^5 \) is a linear subspace of dimension one or higher. Check that the intersection is infinite unless \(L \) is a line and refer to problem 3(a) from problem set 2].