(1) Show that a quasicoherent sheaf on a quasi-projective variety \(X \) is a union of its coherent subsheaves.

[Hint: reduce to the case when \(X \) is projective by replacing your sheaf by its direct image under an appropriate open embedding. If \(F \) is a quasicoherent sheaf on \(X \subset \mathbb{P}^n \), show that every section of \(F|_{\mathbb{A}^n \cap X} \) extends to a map \(\mathcal{O}(-d) \to F \) for some \(d \). Now consider the images of the direct sum of several such maps.]

(2) Recall that the arithmetic genus of a connected complete curve \(X \) is the dimension of the space \(H^1(\mathcal{O}_X) \).

Suppose that each component of \(X \) is isomorphic to \(\mathbb{P}^1 \), two components intersect by at most one point and each such intersection point is a nodal singularity (i.e. its completed local ring is isomorphic to \(k[[x, y]]/(xy) \)).

Let \(\Gamma \) be a graph whose vertices are indexed by components of \(X \) and two vertices are connected by an edge when the corresponding components intersect. Show that \(p_a(X) = 1 - \chi(\Gamma) \), where \(p_a \) denotes the arithmetic genus and \(\chi \) is the Euler characteristic.

(3) Let \(X = \text{Spec}(A) \) be a normal affine irreducible surface with the only singular point \(x \in X \). Show that the following three statements are equivalent:

(a) \(\text{Cl}(X) = 0 \), where \(\text{Cl} \) is the divisor class group, i.e. the quotient of the group of Weil divisors by the subgroup of principal divisors.

(b) \(\text{Pic}(X \setminus x) = 0 \).

(c) \(A \) is UFD.

(4) Let \(X \) be as in problem 3 and let \(\pi : Y \to X \) be a resolution of singularities of \(X \), suppose that \(\pi^{-1}(X \setminus x) \) maps isomorphically to \(X \setminus x \). Suppose also that the canonical line bundle \(K_Y \) is trivial and that \(\pi^{-1}(x) \) is a curve of the type described in problem 2, let \(D_1, \ldots, D_n \) be the components of \(\pi^{-1}(x) \). We get a homomorphism \(\text{Pic}(Y) \to \mathbb{Z}^n, L \mapsto (d_i) \), where the restriction of \(L \) to \(D_i \) is isomorphic to \(\mathcal{O}_{\mathbb{P}^1}(d_i) \). Compute the image of (the class of) \(\mathcal{O}(D_i) \) under that homomorphism.

(5) Let \(G \) be a finite subgroup in \(\text{SL}(2, \mathbb{C}) \) and \(X = \mathbb{A}^2/G \), let \(x \in X \) be the image of 0. It can be shown that \(X \) is normal and there exists a unique resolution \(Y \to X \) satisfying the assumptions of problem 4. Moreover, the map \(\text{Pic}(Y) \to \mathbb{Z}^n \) described in problem 4 is an isomorphism. Deduce that \(\mathbb{C}[x, y]^{G} \) is a UFD iff the Cartan matrix constructed from the graph \(\Gamma \) has determinant \(\pm 1 \) (in fact this determinant is always positive, so the option for it to equal \(-1 \) is not realized). Here Cartan matrix \(C = C_{\Gamma} \) is given by:

1This is in fact true for not necessarily quasi-projective varieties, and even more generally, see e.g. Exercise II.5.15. in Hartshorne.

2We have only discussed how to associate a Weil divisor to a rational function in the cases when \(X \) is a curve or when \(X \) is smooth. In this problem you only need to use that such a construction exists for normal irreducible varieties and that it is compatible with restriction to an open subset.
$C_{ij} = 2$, $C_{ij} = -1$ if $i \neq j$ are connected by an edge in the graph Γ and $C_{ij} = 0$ otherwise.

[In fact, the graph Γ is necessarily one of the simply-laced Dynkin graphs appearing in the classification of compact connected simple groups. The only such graph for which $\det(C_{ij}) = 1$ (this condition is equivalent to the corresponding simple Lie group being simply-connected) corresponds to the largest simple connected compact Lie group E_8. The group G in this case is the binary icosahedral group, i.e. the preimage in the special unitary group $SU(2)$ of the group of symmetries of a regular icosahedron under the homomorphism $SU(2) \to PSU(2) \cong SO(3)$. The surface X is isomorphic to the surface in \mathbb{A}^3 given by the equation $x^2 + y^3 + z^5 = 0$, as described by Felix Klein in his book "Lectures on the icosahedron and solution of the fifth degree equations" (1884); the resolution Y can be obtained from X by 8 blow-ups, cf. Exercise V.5.8 in Hartshorne.]