HOMEWORK 5 FOR 18.706, FALL 2018
DUE MONDAY, NOVEMBER 19.

(1) (a) Show that there is no subring \(A \) in the Hamilton quaternion ring \(H \)
such that \(\mathbb{R} \otimes_{\mathbb{Z}} A = \mathbb{H} \) and \(A \) is an Azumaya algebra over \(\mathbb{Z} \).
(b) Part a) shows that the ring of integer quaternions
\(\mathbb{H}_{\mathbb{Z}} = \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{Z} \} \subset \mathbb{H} \) is not an Azumaya algebra
over \(\mathbb{Z} \). Show however that \(\mathbb{H}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{2}] \) is an Azumaya algebra over
\(\mathbb{Z}[\frac{1}{2}] \).

(2) Let \(F \) be a field of characteristic different from 2. For \(a, b \in F^\times \) let \(A_{a,b} \)
be the four dimensional algebra over \(k \) with basis 1, \(i, j, k \), such that
\(ij = k = -ji, i^2 = a, j^2 = b \).
(a) Check that \(A_{a,b} \) is a c.s.a. over \(F \). Let \(\left(\frac{a,b}{F} \right) \) denote its class in the
Brauer group.
(b) Show that \(\left(\frac{a,b}{F} \right) = 1 \) iff \(b = Nm_{E/F}(z) \) for some \(z \in E = F(\sqrt{a}) \).
(Here the operation in the Brauer group is written multiplicatively).
(c) (Optional) Check\(^1\) that \(\left(\frac{a,b}{F} \right)^2 = 1 = \left(\frac{a,1-a}{F} \right) \) and
\(\left(\frac{a,b,c}{F} \right) = \left(\frac{a,b}{F} \right) \left(\frac{a,c}{F} \right) \).

(3) (Optional) Let \(G \) be a group and set \(A = k[G] \) for a field \(k \). Problem 6 of
homework 4 gives a homomorphism \(HH^*(A) \to H^*(G,k) \).
(a) Construct a homomorphism \(H^*(G,k) \to HH^*(A) \) which is right inverse to
the above homomorphism.
(b) For \(c \in H^2(G, \mathbb{Z}) \) let \(\tilde{G}_c \) be the corresponding central extension of \(G \)
by \(\mathbb{Z} \), let \(\gamma \in \tilde{G} \) be the image of the generator 1 of \(\mathbb{Z} \) in \(\tilde{G}_c \). Set
\(\tilde{A}_c = k[\tilde{G}]/(\gamma - 1)^2 \).
Check that \(\tilde{A}_c \) is a 1-st order deformation of \(A \) whose class is the image
of \(c_k \) under the homomorphism of part (a). Here \(c_k \) is the image of \(c \)
under the natural map \(H^*(G, \mathbb{Z}) \to H^*(G,k) \).

(4) An element \(x \) in a ring \(R \) is said to be ad locally nilpotent if \(ad(x) : a \mapsto xa - ax \) is locally nilpotent, i.e. for any \(a \in R \) there exists \(n \) such that
\(ad(x)^n(a) = 0 \). Show that a multiplicative set consisting of ad locally
nilpotent elements satisfies Ore’s condition.

(5) Let \(K \) be a skew field and \(\phi : K \to K \) a homomorphism. Set \(A = K(x)/(xa = \phi(a)x) \).
Show that the set of powers of \(x \) is a left Ore set, and it is a right Ore
set iff \(\phi \) is surjective. In the latter case prove that \(A \) is a right Ore domain,
i.e. the set of all nonzero elements is right localizing.

\(^1\)The Milnor \(K_2 \) group of \(F \) is the abelian group generated by symbols \(\{ a, b \} \), \(a, b \in F^\times \)
subject to the relations \(\{ a, bc \} = \{ a, b \} \{ a, c \}, \{ a, b \} = \{ b, a \}^{-1}, \{ a, 1 - a \} = 1 \). The identities
of this problem yield a homomorphism from \(K_2(F)/K_2(F)^2 \to Br(F)[2] \), where \(G[2] \) denotes the
2-torsion in an abelian group \(G \). A difficult theorem by Merkuriev and Suslin asserts that this
homomorphism is onto.
(6) Let us say that an ideal \(I \subset R \) is right localizable if the set of elements regular modulo \(I \) is a right Ore set. (Recall that an element is called regular if it’s neither left nor right zero divisor).

Let \(k \) be a field and \(R \subset Mat_2(k[x]) \) be given by \(R = \{(a_{ij}) \mid a_{21} = 0, a_{11} \in k, a_{22} - a_{11} \in xk[x]\} \). Show that \(R \) is right Noetherian, the ideal of strictly upper triangular matrices is prime, has square zero and is not localizable.

(7) Recall that a module is called uniform if it is nonzero and any two nonzero submodules have a nonzero intersection.

Let \(R \) be the ring of continuous \(\mathbb{C} \)-valued functions on \([0,1]\) with pointwise operations. Show that \(R \) has no uniform ideals.

(8) (Optional, repeated from pset 4) Let \(R \) be the ring of real valued continuous functions on the 2-sphere \(S^2 \). Let \(R^+ \) and \(R^- \) be the ring of continuous functions on the upper and lower closed hemispheres respectively. Let \(A \subset Mat_2(R^+) \times Mat_2(R^-) \) be the subring given by: \(m = (m_+, m_-) \in A \) if \(m_+(\theta) = S(\theta)m_-(\theta)S(\theta)^{-1} \). Here \(\theta \in [0,2\pi] \) is the standard coordinate on the equator circle bounding the upper and the lower hemisphere, and

\[
S(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & \sin(\frac{\theta}{2}) \\ -\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}.
\]

Prove that \(A \) is a non-split Azumaya algebra over \(R \).

[Hint: Reduce to the fact that the map \(\pi_1(S^1) \rightarrow \pi_1(S^3) \) induced by the double cover map \(S^3 \rightarrow S^1 \) is not surjective.]