HOMEWORK 4 FOR 18.706, FALL 2018 DUE THURSDAY, NOVEMBER 1.

- (1) Let $R \subset Mat_2(\mathbb{Q})$ consist of matrices $A = (a_{ij})$ such that $a_{11} \in \mathbb{Z}$ and $a_{21} = 0$. Show that the homological dimension of R equals two but the homological dimension of R^{op} (i.e. the homological dimension of the category of right R-modules) equals one.
- (2) Let $D \supset K$ be skew fields. Let d_l be the dimension of D as a left K module and d_r be the dimension of D as a right K-module. Show¹ that if D is finite over its center then $d_l = d_r$.
- (3) Let D be a skew field which is not algebraic over its center k. Show that $D \otimes_k k(t)$ is a simple Noetherian ring which is not isomorphic to a matrix ring over a skew field.
- (4) Let $k = \mathbb{F}_p(t_1, t_2)$ be the field of rational functions in two variables over \mathbb{F}_p . Set $D = k \langle x, y \rangle / (xy - yx = 1, x^p = t_1, y^p = t_2)$.
 - (a) Show that D is a skew field of dimension p^2 over its center k. Give an example of a splitting field of D.

(Hint: Check that $\mathbb{F}_p\langle x, y \rangle/(xy - yx = 1)$ and hence D has no zero divisors.)

- (b) (Optional) Let us generalize the definition of D as follows. For $P \in \mathbb{F}_p[t]$ let D(P) be given by $x^p = P(t_1), y^p = t_2, xy yx = 1$. Check that $P \to [D(P)]$ is a homomorphism from the additive group of polynomials to Br(k).
- (c) (Optional) Show that the kernel of this homomorphism is $\mathbb{F}_p[t^p]$. Conclude that *p*-torsion in the Brauer group of k is infinite.
- (5) Let A_0 be an algebra over a field k. An *n*-th order deformation of A_0 is an associative algebra A over $k[t]/t^{n+1}$, free as a module over $k[t]/t^{n+1}$, together with an isomorphism of k-algebras $f : A/tA \to A_0$. Two such deformations (A, f) and (A', f') are said to be equivalent if there exists an algebra isomorphism $g : A \to A'$ such that f'g = f. As has been explained in class, first order deformations are parametrized by $HH^2(A_0)$.

For the next two questions one can assume that k has characteristic zero.

(a) Compute Hochschild cohomology of the polynomial algebra $A_0 = Sym(V)$ where V is a finite dimensional vector space over k. More precisely, show that it is isomorphic to the space of polynomial polyvector fields on the V^* .

[Hint: do NOT use the bar complex]

(b) According to the above, a first order deformation of $A_0 = Sym(V)$ is determined by a bivector field $\alpha \in Sym(V) \otimes \wedge^2 V^*$. This bivector field defines a skew-symmetric bilinear operation on A_0 , given by $\{f, g\} = \langle \alpha, df \otimes dg \rangle$. Show that the first order deformation defined by α lifts

¹According to T.Y. Lam, the question whether $d_l = d_r$ was raised by E. Artin. The answer is negative in general: there exist skew fields $D \supset K$ for which d_l , d_r is an arbitrary prescribed pair of integers greater than 1 [Schofield, 1985].

to a second order deformation if and only if this operation is a Lie bracket (satisfies the Jacobi identity). In this case α is said to be a *Poisson* bivector field.

- (6) Let A be a k-algebra for a field k, let $H = HH^*(A)$ be its Hochschild cohomology and $H^{ev} = \bigoplus_n HH^{2n}(A)$ be the even part of H. Let D(A) be the category whose objects are A-modules and $Hom_{D(A)}(M, N) = Ext^*(M, N)$ with the usual composition maps.
 - (a) Define a natural homomorphism $H^{ev} \to End(Id_{D(A)})$.
 - (b) (Optional) Extend the homomorphism in (a) to a homomorphism from H to a modification of $End(Id_{D(A)})$ involving the appropriate sign rule.
 - (c) (Optional) Show that for $A = k[t]/(t^2)$ where k is a characteristic two field the map in (a) is not injective on $HH^2(A)$.
 - (d) (Optional) Assume now that $A = k \langle V \rangle / (I)$, $I \subset V \otimes V$ is a Koszul quadratic algebra.

Prove that the homomorphism $H^{ev} \to A^{!} = Ext^{*}_{A}(k,k)$ defined in part (a) induces an isomorphism $\bigoplus_{i=1}^{n} HH^{2n}(A)_{(-2n)} \to Z(A^{!})_{ev}$, while

$$HH^i(A)_{(j)} = 0$$
 for $j < -i$. Here $Z(A^!)$ denotes the center of $A^!$.
Optionally, extend this to an isomorphism $\bigoplus_n HH^n(A)_{(-n)} \to S(A^!)$

where $S(A^{!})$ stands for the supercenter:

 $S(A^{!})^{i} = \{ a \in (A^{!})^{i} \mid ab = (-1)^{ij} ba \forall b \in (A^{!})^{j} \}.$

[Hint: Show that the *i*-th term in the minimal resolution for the regular bimodule over A has the form $((A^!)^i)^* \otimes (A \otimes A^{op})$ and identify a component of the differential in the corresponding complex for $HH^*(A)$ with the map $(A^!)^i \to V \otimes (A^!)^{i+1}$ obtained from the (super)commutator map $V^* \otimes (A^!)^{i} \to (A^!)^{i+1}$ by "lowering the index".]

(7) (Optional) Let R be the ring of real valued continuous functions on the 2sphere S^2 . Let R^+ and R^- be the ring of continuous functions on the upper and lower closed hemispheres respectively. Let $A \subset Mat_2(R^+) \times Mat_2(R^-)$ be the subring given by: $m = (m_+, m_-) \in A$ if $m_+(\theta) = S(\theta)m_-(\theta)S(\theta)^{-1}$. Here $\theta \in [0, 2\pi)$ is the standard coordinate on the equator circle bounding the upper and the lower hemisphere, and

$$S(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & \sin(\frac{\theta}{2}) \\ -\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}.$$

Prove that A is a non-split Azumaya algebra over R.

[Hint: Basic topology can be used in this problem. Reduce the statement to the fact that the map $\pi_1(S^1) \to \pi_1(S^1)$ induced by the double cover map $S^1 \to S^1$ is not surjective.]