HOMEWORK 3 FOR 18.706, FALL 2018 DUE THURSDAY, OCTOBER 18.

- (1) Let k be a field and I an uncountable set. Let $R = k^{I} = \prod_{I} k$ and let $M \subset R$ consist of such $r = (r_{i}) \in R$ that $\{i \in I \mid r_{i} \neq 0\}$ is at most countable. It is clear that M is an ideal in R.
 - (a) Check that M is not finitely generated.
 - (b) Show that for any sequence $m_1, m_2, \ldots, m_n \in M$ there exists $m \in M$ such that m_n belongs to the ideal generated by m.
 - (c) Deduce that for a collection of nonzero R-module homomorphisms $f_j : M \to M_j$ either we have $f_j = 0$ for all but finitely many j, or there exists $m \in M$ for which $f_j(m) \neq 0$ for infinitely many j. In other words, the functor $X \mapsto Hom_R(M, X)$ commutes with arbitrary direct sums.
- (2) In this problem we consider a finite dimensional algebra A over a field k and the matrix C, $C_{ij} = dim_k(Hom(P_i, P_j))$ where P_i , P_j run over the set of isomorphism classes of indecomposable projective modules.
 - (a) Let $k = \mathbb{R}$ and assume that A has finite homological dimension. Show that $det(C) = \pm 2^n$ for some n.
 - (b) (Optional) Let k be an algebraically closed field of characteristic p > 0 and A = k[G] for a finite group G which has a normal Sylow psubgroup. Check ¹ that $det(C) = p^n$ for some n.

[Hint. Let H = G/S where S is the Sylow p-subgroup, so that $G = H \ltimes S$ while k[H] is semisimple and irreducible representations of G are in bijection with irreducible representations of H over k and also with irreducible representations of H over a characteristic zero field F. Relate C to the matrix of multiplication by F[S] acting on $K(Rep_F(G))$ and compute this matrix in the basis given by conjugacy classes.]

- (3) Show that a self-injective Artinian ring has finite homological dimension iff it is semi-simple.
- (4) Let \mathcal{A} be the category of finitely generated modules over $\mathbb{C}[x]$.
 - (a) Prove that \mathcal{A}^{op} is not equivalent to the category of finitely generated modules over any algebra.
 - (b) Give an example of a Serre subcategory $\mathcal{B} \subset \mathcal{A}$, so that both \mathcal{B} and \mathcal{A}/\mathcal{B} are equivalent to its opposite category.
- (5) Let \mathcal{A} be the category of vector spaces over a field k which are at most countably dimensional, and let \mathcal{B} be the Serre subcategory of finite dimensional vector spaces. Prove that the set of isomorphism classes of objects in \mathcal{A}/\mathcal{B} has two elements. Show that the algebra of endomorphisms of a nonzero object in \mathcal{A}/\mathcal{B} is simple.

¹In fact, this is true for any finite group G but this general result is harder to prove.

HOMEWORK 3 FOR 18.706, FALL 2018 DUE THURSDAY, OCTOBER 18.

(6) Let $A = \bigoplus_{n=0}^{\infty} A_n$ be a graded algebra over a field k with finite dimensional graded component. Define the Cartan matrix $C \in Mat_d(\mathbb{Z}[[t]])$ by $C_{i,j} = \sum t^n \dim Hom(P_i, P_j(n))$. Here d is the number of isomorphism classes of irreducible modules concentrated in graded degree zero, P_i are projective covers of those irreducibles; also, for a graded module M we let M(n) denote the module M with shifted grading: $M_m(n) = M_{m+n}$.

Assume that A is left Noetherian and has finite homological dimension. Prove that det(C) is the Taylor series of a nonzero rational function in t.

- (7) Let Q be the quiver with two vertices and two edges of opposite orientation connecting them. Set $A = A(Q)/(e_1e_2)$ where e_1 , e_2 are the elements corresponding to the edges.
 - (a) Show that A is finite dimensional over $\mathbb C$ and has finite homological dimension.

[Hint: Recall that an Artinian ring has finite homological dimension provided that each irreducible module has a finite projective resolution.]

- (b) (Optional) Show that A is Koszul and the Koszul dual ring satisfies $A^! \cong A$.
- (8) (Optional) Let $W = \mathbb{C}[x_1, \ldots, x_n, \partial_1, \ldots, \partial_n]$ be the Weyl algebra acting on $M = \mathbb{C}[x_1, \ldots, x_n]$. We equip W, M with the usual grading: $deg(x_i) = 1$, $deg(\partial_i) = -1$.
 - (a) Let \mathcal{B} be the category of graded W-modules such that $e = \sum x_i \partial_i$ acts on the graded component of degree d by $d \cdot Id$. Let $\mathcal{A} = \mathcal{B}/\mathcal{C}$ where \mathcal{C} is the full subcategory of modules where x_i acts locally nilpotently for $i = 1, \ldots, n$.

Compute $Ext_{\mathcal{A}}(M, M)$.

(b) Let \mathcal{B}' be the category of all W-modules and \mathcal{C}' the full subcategory of modules where x_i acts locally nilpotently for $i = 1, \ldots, n$. Let $\mathcal{A}' = \mathcal{B}'/\mathcal{C}'$.

Compute $Ext_{\mathcal{A}'}(M, M)$.

[Hint: The answer is $H^*(\mathbb{CP}^{n-1},\mathbb{C})$ and $H^*(\mathbb{C}^n \setminus \{0\},\mathbb{C})$ respectively. To run the calculation one can use the following ingredients:

- the projective resolution of M in \mathcal{B}' obtained by inducing the Koszul resolution of \mathbb{C} considered as a module over $\mathbb{C}[\partial_1, \ldots, \partial_n]$ to W (it is closely related to the De Rham complex of \mathbb{C}^n);

– a right resolution of M by modules where one of x_i acts invertibly: notice that for such a module N we have: $Hom_{\mathcal{B}'}(X, N) = Hom_{\mathcal{A}'}(X, N)$ and similarly for \mathcal{A} ;

. .

- the long exact sequence

$$Ext^{i}_{\mathcal{B}'}(X,Y) \to Ext^{i}_{\mathcal{B}}(X,Y) \to Ext^{i-1}_{\mathcal{B}'}(X,Y) \to Ext^{i+1}_{\mathcal{B}'}(X,Y) \to \cdots$$
 for $X, Y \in \mathcal{B}.]$

 $\mathbf{2}$