Statistical Estimation in the Presence of Group Actions

Alex Wein
MIT Mathematics
In memoriam

Amelia Perry
1991 – 2018
My research interests

- Statistical and computational limits of average-case inference problems (signal planted in random noise)
My research interests

- Statistical and computational limits of average-case inference problems (signal planted in random noise)
 - Community detection (stochastic block model)
 - Spiked matrix/tensor problems
 - Synchronization / group actions (today)
My research interests

- Statistical and computational limits of average-case inference problems (signal planted in random noise)
 - Community detection (stochastic block model)
 - Spiked matrix/tensor problems
 - Synchronization / group actions (today)

- Connections to...
My research interests

- Statistical and computational limits of average-case inference problems (signal planted in random noise)
 - Community detection (stochastic block model)
 - Spiked matrix/tensor problems
 - Synchronization / group actions (today)

- Connections to...
 - Statistical physics
 - Phase transitions: easy, hard, impossible
My research interests

- Statistical and computational limits of average-case inference problems (signal planted in random noise)
 - Community detection (stochastic block model)
 - Spiked matrix/tensor problems
 - Synchronization / group actions (today)

- Connections to...
 - Statistical physics
 - Phase transitions: easy, hard, impossible
 - Algebra
 - Group theory, representation theory, invariant theory
My research interests

▶ Statistical and computational limits of average-case inference problems (signal planted in random noise)
 ▶ Community detection (stochastic block model)
 ▶ Spiked matrix/tensor problems
 ▶ Synchronization / group actions (today)

▶ Connections to...
 ▶ Statistical physics
 ▶ Phase transitions: easy, hard, impossible
 ▶ Algebra
 ▶ Group theory, representation theory, invariant theory

▶ Today: problems involving group actions
 ▶ A meeting point of statistics, algebra, signal processing computer science, statistical physics, . . .
Motivation: cryo-electron microscopy (cryo-EM)

Image credit: [Singer, Shkolnisky '11]
Motivation: cryo-electron microscopy (cryo-EM)

- Biological imaging method: determine structure of molecule
Motivation: cryo-electron microscopy (cryo-EM)

- Biological imaging method: determine structure of molecule
- 2017 Nobel Prize in Chemistry
Motivation: cryo-electron microscopy (cryo-EM)

- Biological imaging method: determine structure of molecule
- 2017 Nobel Prize in Chemistry
- Given many noisy 2D images of a 3D molecule, taken from different unknown angles
Motivation: cryo-electron microscopy (cryo-EM)

- Biological imaging method: determine structure of molecule
- 2017 Nobel Prize in Chemistry
- Given many noisy 2D images of a 3D molecule, taken from different unknown angles
- Goal is to reconstruct the 3D structure of the molecule
Motivation: cryo-electron microscopy (cryo-EM)

- Biological imaging method: determine structure of molecule
- 2017 Nobel Prize in Chemistry
- Given many noisy 2D images of a 3D molecule, taken from different unknown angles
- Goal is to reconstruct the 3D structure of the molecule
- Group action by $SO(3)$ (rotations in 3D)
Other examples

Other problems involving random group actions:
Other examples

Other problems involving random group actions:

- Image registration

Group: SO(2) (2D rotations)
Other examples

Other problems involving random group actions:

► **Image registration**

Group: $\text{SO}(2)$ (2D rotations)

Image credit: Bandeira, PhD thesis '15

► **Multi-reference alignment**

Group: \mathbb{Z}/p (cyclic shifts)

Image credit: Jonathan Weed
Other examples

Other problems involving random group actions:

▶ Image registration

Group: SO(2) (2D rotations)

Applications: computer vision, radar, structural biology, robotics, geology, paleontology, ...

▶ Multi-reference alignment

Group: \mathbb{Z}/p (cyclic shifts)

Image credit: [Bandeira, PhD thesis '15]

Image credit: Jonathan Weed
Other examples

Other problems involving random group actions:

▶ **Image registration**

![Image credit: Bandeira, PhD thesis '15]

Group: $\text{SO}(2)$ (2D rotations)

▶ **Multi-reference alignment**

![Image credit: Jonathan Weed]

Group: \mathbb{Z}/p (cyclic shifts)

▶ Applications: computer vision, radar, structural biology, robotics, geology, paleontology, ...

▶ Methods used in practice often lack provable guarantees...
Part I: Synchronization
Synchronization problems

The synchronization approach [1]: learn the group elements

Fix a group G

- e.g. $\text{SO}(3)

$g \in G$

- vector of unknown group elements

- e.g. rotation of each image

Given pairwise information: for each $i < j$

- a noisy measurement of $g_i g_j^{-1}$

- e.g. by comparing two images

Goal: recover g up to global right-multiplication

- can't distinguish (g_1, \ldots, g_n) from $(g_1 h, \ldots, g_n h)$

In cryo-EM: once you learn the rotations, it is possible to reconstruct a de-noised model of the molecule [2]

[1] Singer ’11
[2] Singer, Shkolnisky ’11
Synchronization problems

The synchronization approach [1]: learn the group elements

- Fix a group G
 - e.g. $\text{SO}(3)$

[1] Singer ’11
[2] Singer, Shkolnisky ’11
Synchronization problems

The synchronization approach [1]: learn the group elements

- Fix a group G
 - e.g. $\text{SO}(3)$
- $g \in G^n$ – vector of unknown group elements
 - e.g. rotation of each image

In cryo-EM: once you learn the rotations, it is possible to reconstruct a de-noised model of the molecule [2]

[1] Singer ’11
[2] Singer, Shkolnisky ’11
Synchronization problems

The synchronization approach [1]: learn the group elements

- Fix a group G
 - e.g. SO(3)

- $g \in G^n$ – vector of unknown group elements
 - e.g. rotation of each image

- Given pairwise information: for each $i < j$, a noisy measurement of $g_i g_j^{-1}$
 - e.g. by comparing two images

[1] Singer '11
[2] Singer, Shkolnisky '11
Synchronization problems

The synchronization approach [1]: learn the group elements

- Fix a group G
 - e.g. $\text{SO}(3)$

- $g \in G^n$ – vector of unknown group elements
 - e.g. rotation of each image

- Given pairwise information: for each $i < j$, a noisy measurement of $g_i g_j^{-1}$
 - e.g. by comparing two images

- Goal: recover g up to global right-multiplication
 - can’t distinguish (g_1, \ldots, g_n) from $(g_1 h, \ldots, g_n h)$

[1] Singer ’11
[2] Singer, Shkolnisky ’11
Synchronization problems

The synchronization approach [1]: learn the group elements

- Fix a group G
 - e.g. $\text{SO}(3)$

- $g \in G^n$ – vector of unknown group elements
 - e.g. rotation of each image

- Given pairwise information: for each $i < j$, a noisy measurement of $g_ig_j^{-1}$
 - e.g. by comparing two images

- Goal: recover g up to global right-multiplication
 - can’t distinguish (g_1, \ldots, g_n) from (g_1h, \ldots, g_nh)

In cryo-EM: once you learn the rotations, it is possible to reconstruct a de-noised model of the molecule [2]

[1] Singer ’11
[2] Singer, Shkolnisky ’11
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

$\mathbf{G} = \mathbb{Z}/2 = \{\pm 1\}$
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- For each i, j observe $x_i x_j + \mathcal{N}(0, \sigma^2)$
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- For each i, j observe $x_i x_j + \mathcal{N}(0, \sigma^2)$
- Specifically, observe $n \times n$ matrix $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W$
- $\lambda \geq 0$ – signal-to-noise parameter
- W – random noise matrix: symmetric with entries $\mathcal{N}(0, 1)$
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- For each i, j observe $x_i x_j + \mathcal{N}(0, \sigma^2)$
- Specifically, observe $n \times n$ matrix $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} \mathcal{W}$
- $\lambda \geq 0$ – signal-to-noise parameter
- \mathcal{W} – random noise matrix: symmetric with entries $\mathcal{N}(0, 1)$
- Y_{ij} is a noisy measurement of $x_i x_j$ (same/diff)

Normalization: MMSE is a constant (depending on λ)

This is a spiked Wigner model: in general $x_i \sim P$ (some prior)

Statistical physics makes extremely precise (non-rigorous) predictions about this type of problem

Often later proved correct
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- For each i, j observe $x_i x_j + \mathcal{N}(0, \sigma^2)$
- Specifically, observe $n \times n$ matrix $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W$
- $\lambda \geq 0$ – signal-to-noise parameter
- W – random noise matrix: symmetric with entries $\mathcal{N}(0, 1)$
- Y_{ij} is a noisy measurement of $x_i x_j$ (same/diff)
- Normalization: MMSE is a constant (depending on λ)
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- For each i, j observe $x_i x_j + \mathcal{N}(0, \sigma^2)$
- Specifically, observe $n \times n$ matrix $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} \mathcal{W}$
 - $\lambda \geq 0$ – signal-to-noise parameter
 - \mathcal{W} – random noise matrix: symmetric with entries $\mathcal{N}(0, 1)$
 - Y_{ij} is a noisy measurement of $x_i x_j$ (same/diff)
- Normalization: MMSE is a constant (depending on λ)

This is a spiked Wigner model: in general $x_i \sim \mathcal{P}$ (some prior)
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- For each i, j observe $x_i x_j + \mathcal{N}(0, \sigma^2)$
- Specifically, observe $n \times n$ matrix $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} \mathcal{W}$
- $\lambda \geq 0$ – signal-to-noise parameter
- \mathcal{W} – random noise matrix: symmetric with entries $\mathcal{N}(0, 1)$
- Y_{ij} is a noisy measurement of $x_i x_j$ (same/diff)
- Normalization: MMSE is a constant (depending on λ)

This is a spiked Wigner model: in general $x_i \sim \mathcal{P}$ (some prior)

Statistical physics makes extremely precise (non-rigorous) predictions about this type of problem
- Often later proved correct
A simple model: Gaussian $\mathbb{Z}/2$ synchronization

- $G = \mathbb{Z}/2 = \{\pm 1\}$
- True signal $x \in \{\pm 1\}^n$ (vector of group elements)
- Observe $n \times n$ matrix $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W$

Image credit: [Deshpande, Abbe, Montanari '15]
What does statistical physics have to do with Bayesian inference?
Statistical physics and inference

What does statistical physics have to do with Bayesian inference?

In inference, observe $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W$ and want to infer x
Statistical physics and inference

What does statistical physics have to do with Bayesian inference?

In inference, observe $Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W$ and want to infer x

Posterior distribution: $\Pr[x|Y] \propto \exp(\lambda x^\top Y x)$
Statistical physics and inference

What does statistical physics have to do with Bayesian inference?

In inference, observe $Y = \frac{\lambda}{n}xx^\top + \frac{1}{\sqrt{n}}W$ and want to infer x

Posterior distribution: $\Pr[x|Y] \propto \exp(\lambda x^\top Yx)$

In physics, this is called a Boltzmann/Gibbs distribution:

\[
\Pr[x] \propto \exp(-\beta H(x))
\]

- Energy ("Hamiltonian") $H(x) = -x^\top Yx$
- Temperature $\beta = \lambda$
Statistical physics and inference

What does statistical physics have to do with Bayesian inference?

In inference, observe \(Y = \frac{\lambda}{n}xx^\top + \frac{1}{\sqrt{n}}W \) and want to infer \(x \)

Posterior distribution: \(\Pr[x|Y] \propto \exp(\lambda x^\top Yx) \)

In physics, this is called a **Boltzmann/Gibbs** distribution:

\[
\Pr[x] \propto \exp(-\beta H(x))
\]

- **Energy ("Hamiltonian")** \(H(x) = -x^\top Yx \)
- **Temperature** \(\beta = \lambda \)

So posterior distribution of Bayesian inference obeys the same equations as a disordered physical system (e.g. magnet, spin glass)
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

[1] Pearl ’82
[2] Donoho, Maleki, Montanari ’09
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

▶ Each unknown x_i is a “node”

[1] Pearl ’82
[2] Donoho, Maleki, Montanari ’09
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

- Each unknown x_i is a “node”
- Each observation (“interaction”) Y_{ij} is an “edge”
 - In our case, a complete graph

[1] Pearl '82
[2] Donoho, Maleki, Montanari '09
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

- Each unknown x_i is a “node”
- Each observation (“interaction”) Y_{ij} is an “edge”
 - In our case, a complete graph
- Nodes iteratively pass “messages” or “beliefs” to each other along edges, and then update their own beliefs

[1] Pearl ’82
[2] Donoho, Maleki, Montanari ’09
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

- Each unknown x_i is a “node”
- Each observation (“interaction”) Y_{ij} is an “edge”
 - In our case, a complete graph
- Nodes iteratively pass “messages” or “beliefs” to each other along edges, and then update their own beliefs
- Hard to analyze

[1] Pearl ’82
[2] Donoho, Maleki, Montanari ’09
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

▶ Each unknown x_i is a “node”
▶ Each observation (“interaction”) Y_{ij} is an “edge”
 ▶ In our case, a complete graph
▶ Nodes iteratively pass “messages” or “beliefs” to each other along edges, and then update their own beliefs
▶ Hard to analyze

In our case (since interactions are “dense”), we can use a simplification of BP called AMP (approximate message passing) [2]

[1] Pearl ’82
[2] Donoho, Maleki, Montanari ’09
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

- Each unknown x_i is a “node”
- Each observation (“interaction”) Y_{ij} is an “edge”
 - In our case, a complete graph
- Nodes iteratively pass “messages” or “beliefs” to each other along edges, and then update their own beliefs
- Hard to analyze

In our case (since interactions are “dense”), we can use a simplification of BP called AMP (approximate message passing) [2]

- Easy/possible to analyze

[1] Pearl ‘82
BP and AMP

“Axiom” from statistical physics: the best algorithm for every* problem is BP (belief propagation) [1]

- Each unknown x_i is a “node”
- Each observation (“interaction”) Y_{ij} is an “edge”
 - In our case, a complete graph
- Nodes iteratively pass “messages” or “beliefs” to each other along edges, and then update their own beliefs
- Hard to analyze

In our case (since interactions are “dense”), we can use a simplification of BP called AMP (approximate message passing) [2]

- Easy/possible to analyze
- Provably optimal mean squared error for many problems

[1] Pearl ’82
[2] Donoho, Maleki, Montanari ’09
AMP for \(\mathbb{Z}/2 \) synchronization

\[
Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n
\]
AMP for \(\mathbb{Z}/2 \) synchronization

\[Y = \frac{\lambda}{n} x x^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n \]

AMP algorithm:

- State \(v \in \mathbb{R}^n \) – estimate for \(x \)
AMP for $\mathbb{Z}/2$ synchronization

$$Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n$$

AMP algorithm:

- State $v \in \mathbb{R}^n$ – estimate for x
- Initialize v to small random vector
AMP for \(\mathbb{Z}/2\) synchronization

\[
Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n
\]

AMP algorithm:

- State \(v \in \mathbb{R}^n\) – estimate for \(x\)
- Initialize \(v\) to small random vector
- Repeat:
 - 1. Power iteration: \(v \leftarrow Yv\) (power iteration)
amp for \(\mathbb{Z}/2 \) synchronization

\[
Y = \frac{\lambda}{n} x x^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n
\]

AMP algorithm:

- State \(v \in \mathbb{R}^n \) – estimate for \(x \)
- Initialize \(v \) to small random vector
- Repeat:
 1. Power iteration: \(v \leftarrow Yv \) (power iteration)
 2. Onsager: \(v \leftarrow v + [\text{Onsager term}] \)
AMP for $\mathbb{Z}/2$ synchronization

$$Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n$$

AMP algorithm:

- State $v \in \mathbb{R}^n$ – estimate for x
- Initialize v to small random vector
- Repeat:
 1. Power iteration: $v \leftarrow Yv$ (power iteration)
 2. Onsager: $v \leftarrow v + [\text{Onsager term}]
 3. Entrywise soft projection: $v_i \leftarrow \tanh(\lambda v_i)$ (for all i)
 - Resulting values in $[-1, 1]$
AMP is optimal

\[Y = \frac{\lambda}{n} xx^\top + \frac{1}{\sqrt{n}} W, \quad x \in \{\pm 1\}^n \]

For \(\mathbb{Z}/2 \) synchronization, AMP is provably optimal.

Deshpande, Abbe, Montanari, '15
Free energy landscapes

What do physics predictions look like?

$F(\gamma) = \lambda \left[-\lambda^2 \frac{\gamma^2}{4} + 1 \right] + \frac{1}{2} \gamma \left(\gamma \lambda^2 + 1 \right) - E_z \sim N(0, 1) \log(2 \cosh(\gamma + \sqrt{\gamma^2 + z}))$

x-axis: γ: correlation with true signal (related to MSE)

y-axis: f: free energy – AMP's "objective function" (minimize)

AMP – gradient descent starting from $\gamma = 0$ (left side)

STAT (statistical) – global minimum

So yields computational and statistical MSE for each λ

Lesieur, Krzakala, Zdeborová '15
Free energy landscapes

What do physics predictions look like?

\[f(\gamma) = \frac{1}{\lambda} \left[\frac{-\lambda^2}{4} \left(\frac{\gamma^2}{\lambda^4} + 1 \right) + \frac{1}{2} \gamma \left(\frac{\gamma}{\lambda^2} + 1 \right) - \mathbb{E}_{z \sim \mathcal{N}(0,1)} \log(2 \cosh(\gamma + \sqrt{\gamma}z)) \right] \]
Free energy landscapes

What do physics predictions look like?

\[f(\gamma) = \frac{1}{\lambda} \left[-\frac{\lambda^2}{4} \left(\frac{\gamma^2}{\lambda^4} + 1 \right) + \frac{1}{2} \gamma \left(\frac{\gamma^2}{\lambda^2} + 1 \right) - \mathbb{E}_{z \sim \mathcal{N}(0,1)} \log(2 \cosh(\gamma + \sqrt{\gamma}z)) \right] \]

X-axis γ: correlation with true signal (related to MSE)
Y-axis f: free energy – AMP’s “objective function” (minimize)

Lesieur, Krzakala, Zdeborová ’15
Free energy landscapes

What do physics predictions look like?

\[f(\gamma) = \frac{1}{\lambda} \left[-\frac{\lambda^2}{4} \left(\frac{\gamma^2}{\lambda^4} + 1 \right) + \frac{1}{2} \gamma \left(\frac{\gamma}{\lambda^2} + 1 \right) - \mathbb{E}_{z \sim \mathcal{N}(0,1)} \log(2 \cosh(\gamma + \sqrt{\gamma} z)) \right] \]

x-axis \(\gamma \): correlation with true signal (related to MSE)
y-axis \(f \): free energy – AMP’s “objective function” (minimize)

AMP – gradient descent starting from \(\gamma = 0 \) (left side)

STAT (statistical) – global minimum

Lesieur, Krzakala, Zdeborová ’15
Free energy landscapes

What do physics predictions look like?

\[f(\gamma) = \frac{1}{\lambda} \left[-\frac{\lambda^2}{4} \left(\frac{\gamma^2}{\lambda^4} + 1 \right) + \frac{1}{2} \gamma \left(\frac{\gamma}{\lambda^2} + 1 \right) - \mathbb{E}_{z \sim \mathcal{N}(0,1)} \log(2 \cosh(\gamma + \sqrt{\gamma}z)) \right] \]

x-axis \(\gamma \): correlation with true signal (related to MSE)

y-axis \(f \): **free energy** – AMP’s “objective function” (minimize)

AMP – gradient descent starting from \(\gamma = 0 \) (left side)

STAT (statistical) – global minimum

So yields **computational** and **statistical** MSE for each \(\lambda \)

Lesieur, Krzakala, Zdeborová ’15
Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM

Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

- Using representation theory we define a very general Gaussian observation model for synchronization over any compact group

Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM

Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

- Using representation theory we define a very general Gaussian observation model for synchronization over any compact group
 - Significantly generalizes $\mathbb{Z}/2$ case

Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM

Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

- Using representation theory we define a very general Gaussian observation model for synchronization over any compact group
 - Significantly generalizes $\mathbb{Z}/2$ case
- We give a precise analysis of the statistical and computational limits of this model
Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

- Using representation theory we define a very general Gaussian observation model for synchronization over any compact group
 - Significantly generalizes $\mathbb{Z}/2$ case
- We give a precise analysis of the statistical and computational limits of this model
 - Uses non-rigorous (but well-established) ideas from statistical physics
 - Methods proven correct in related settings

Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM

Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

- Using representation theory we define a very general Gaussian observation model for synchronization over any compact group
 - Significantly generalizes $\mathbb{Z}/2$ case
- We give a precise analysis of the statistical and computational limits of this model
 - Uses non-rigorous (but well-established) ideas from statistical physics
 - Methods proven correct in related settings
 - Includes an AMP algorithm which we believe is optimal among all polynomial-time algorithms

Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM

Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

- Using representation theory we define a very general Gaussian observation model for synchronization over any compact group
 - Significantly generalizes $\mathbb{Z}/2$ case

- We give a precise analysis of the statistical and computational limits of this model
 - Uses non-rigorous (but well-established) ideas from statistical physics
 - Methods proven correct in related settings
 - Includes an AMP algorithm which we believe is optimal among all polynomial-time algorithms

- Also some rigorous statistical lower and upper bounds

Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM

Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
- True signal $x \in U(1)^n$
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
- True signal $x \in U(1)^n$
- W – complex Gaussian noise (GUE)
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
- True signal $x \in U(1)^n$
- W – complex Gaussian noise (GUE)
- Observe
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
- True signal $x \in U(1)^n$
- W – complex Gaussian noise (GUE)
- Observe

$$Y^{(1)} = \frac{\lambda_1}{n} xx^* + \frac{1}{\sqrt{n}} W^{(1)}$$
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{z \in \mathbb{C} : |z| = 1\}$ (angles)
- True signal $x \in U(1)^n$
- W – complex Gaussian noise (GUE)
- Observe

$$Y^{(1)} = \frac{\lambda_1}{n} xx^* + \frac{1}{\sqrt{n}} W^{(1)}$$

$$Y^{(2)} = \frac{\lambda_2}{n} x^2 x^{*2} + \frac{1}{\sqrt{n}} W^{(2)}$$

$$\vdots$$

$$Y^{(K)} = \frac{\lambda_K}{n} x^K x^{*K} + \frac{1}{\sqrt{n}} W^{(K)}$$

where x^k means entry-wise kth power.
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
- True signal $x \in U(1)^n$
- W – complex Gaussian noise (GUE)
- Observe

$$Y^{(1)} = \frac{\lambda_1}{n} xx^* + \frac{1}{\sqrt{n}} W^{(1)}$$

$$Y^{(2)} = \frac{\lambda_2}{n} x^2 x^* x^2 + \frac{1}{\sqrt{n}} W^{(2)}$$

$$\vdots$$

$$Y^{(K)} = \frac{\lambda_K}{n} x^K x^* x^K + \frac{1}{\sqrt{n}} W^{(K)}$$

where x^K means entry-wise kth power.

- This model has information on different frequencies
Multi-frequency $U(1)$ synchronization

- $G = U(1) = \{ z \in \mathbb{C} : |z| = 1 \}$ (angles)
- True signal $x \in U(1)^n$
- W – complex Gaussian noise (GUE)
- Observe

$$Y^{(1)} = \frac{\lambda_1}{n} xx^* + \frac{1}{\sqrt{n}} W^{(1)}$$

$$Y^{(2)} = \frac{\lambda_2}{n} x^2 x^{*2} + \frac{1}{\sqrt{n}} W^{(2)}$$

$$\cdots$$

$$Y^{(K)} = \frac{\lambda_K}{n} x^K x^{*K} + \frac{1}{\sqrt{n}} W^{(K)}$$

where x^k means entry-wise kth power.

- This model has information on different frequencies
- Challenge: how to synthesize information across frequencies?
AMP for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^{*k} + \frac{1}{\sqrt{n}} W^{(k)}$$ for $k = 1, \ldots, K$
AMP for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^{*k} + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

Algorithm’s state: $v^{(k)} \in \mathbb{C}^n$ for each frequency k

- $v^{(k)}$ is an estimate of (x_1^k, \ldots, x_n^k)
AMP for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^{*k} + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

Algorithm’s state: $\nu^{(k)} \in \mathbb{C}^n$ for each frequency k

- $\nu^{(k)}$ is an estimate of (x_1^k, \ldots, x_n^k)

AMP algorithm:

- Power iteration (separately on each frequency):
 $$\nu^{(k)} \leftarrow Y^{(k)} \nu^{(k)}$$
AMP for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^* + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

Algorithm’s state: $\nu^{(k)} \in \mathbb{C}^n$ for each frequency k

- $\nu^{(k)}$ is an estimate of (x^k_1, \ldots, x^k_n)

AMP algorithm:

- Power iteration (separately on each frequency): $\nu^{(k)} \leftarrow Y^{(k)} \nu^{(k)}$
- “Soft projection” (separately on each index i): $\nu_i^{(\cdot)} \leftarrow \mathcal{F}(\nu_i^{(\cdot)})$
 - This synthesizes the frequencies in a non-trivial way
AMP for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^*k + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

Algorithm’s state: $\nu^{(k)} \in \mathbb{C}^n$ for each frequency k

- $\nu^{(k)}$ is an estimate of (x_1^k, \ldots, x_n^k)

AMP algorithm:

- Power iteration (separately on each frequency):
 $$\nu^{(k)} \leftarrow Y^{(k)} \nu^{(k)}$$

- “Soft projection” (separately on each index i):
 $$\nu_i^{(\cdot)} \leftarrow \mathcal{F}(\nu_i^{(\cdot)})$$
 - This synthesizes the frequencies in a non-trivial way

- Onsager correction term
AMP for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^{*k} + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

Algorithm’s state: $\nu^{(k)} \in \mathbb{C}^n$ for each frequency k

- $\nu^{(k)}$ is an estimate of (x_1^k, \ldots, x_n^k)

AMP algorithm:

- Power iteration (separately on each frequency): $\nu^{(k)} \leftarrow Y^{(k)} \nu^{(k)}$

- “Soft projection” (separately on each index i): $\nu_i^{(\cdot)} \leftarrow F(\nu_i^{(\cdot)})$
 - This synthesizes the frequencies in a non-trivial way

- Onsager correction term

Analysis of AMP:

- Exact expression for AMP’s MSE (as $n \to \infty$) as a function of $\lambda_1, \ldots, \lambda_K$
AMP for $U(1)$ synchronization

$$
Y^{(k)} = \frac{\lambda_k}{n} x^k x^* k + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for} \quad k = 1, \ldots, K
$$

Algorithm’s state: $v^{(k)} \in \mathbb{C}^n$ for each frequency k

- $v^{(k)}$ is an estimate of (x_1^k, \ldots, x_n^k)

AMP algorithm:

- Power iteration (separately on each frequency):
 $$v^{(k)} \leftarrow Y^{(k)} v^{(k)}$$

- “Soft projection” (separately on each index i):
 $$v_i^{(\cdot)} \leftarrow F(v_i^{(\cdot)})$$
 - This synthesizes the frequencies in a non-trivial way

- Onsager correction term

Analysis of AMP:

- Exact expression for AMP’s MSE (as $n \to \infty$) as a function of $\lambda_1, \ldots, \lambda_K$
- Also, exact expression for the statistically optimal MSE
Results for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^* + \frac{1}{\sqrt{n}} W^{(k)}$$ \text{ for } k = 1, \ldots, K
Results for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^{*k} + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

- Single frequency: given $Y^{(k)}$, can non-trivially estimate x^k iff $\lambda_k > 1$
Results for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^* + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

- Single frequency: given $Y^{(k)}$, can non-trivially estimate x^k iff $\lambda_k > 1$
- Information-theoretically, with $\lambda_1 = \cdots = \lambda_K = \lambda$, need $\lambda \sim \sqrt{\log K / K}$ (for large K)
Results for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^*k + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K$$

- Single frequency: given $Y^{(k)}$, can non-trivially estimate x^k iff $\lambda_k > 1$
- Information-theoretically, with $\lambda_1 = \cdots = \lambda_K = \lambda$, need $\lambda \sim \sqrt{\log K/K}$ (for large K)
- But AMP (and conjecturally, any poly-time algorithm) requires $\lambda_k > 1$ for some k
Results for $U(1)$ synchronization

$$Y^{(k)} = \frac{\lambda_k}{n} x^k x^* + \frac{1}{\sqrt{n}} \mathcal{W}^{(k)} \quad \text{for } k = 1, \ldots, K$$

- Single frequency: given $Y^{(k)}$, can non-trivially estimate x^k iff $\lambda_k > 1$

- Information-theoretically, with $\lambda_1 = \cdots = \lambda_K = \lambda$, need $\lambda \sim \sqrt{\log K / K}$ (for large K)

- But AMP (and conjecturally, any poly-time algorithm) requires $\lambda_k > 1$ for some k
 - Computationally hard to synthesize sub-critical ($\lambda \leq 1$) frequencies
Results for $U(1)$ synchronization

\[Y^{(k)} = \frac{\lambda_k}{n} x^k x^* + \frac{1}{\sqrt{n}} W^{(k)} \quad \text{for } k = 1, \ldots, K \]

- Single frequency: given $Y^{(k)}$, can non-trivially estimate x^k iff $\lambda_k > 1$

- Information-theoretically, with $\lambda_1 = \cdots = \lambda_K = \lambda$, need $\lambda \sim \sqrt{\log K / K}$ (for large K)

- But AMP (and conjecturally, any poly-time algorithm) requires $\lambda_k > 1$ for some k
 - Computationally hard to synthesize sub-critical ($\lambda \leq 1$) frequencies

- But once above the $\lambda = 1$ threshold, adding frequencies helps reduce MSE of AMP
Results for $U(1)$ synchronization

Solid: AMP ($n = 100$)
Dotted: theoretical ($n \to \infty$)
Same λ on each frequency

($K = \text{num freq}$)

Image credit: Perry, W., Bandeira, Moitra, *Message-passing algorithms for synchronization problems over compact groups*, to appear in CPAM
General groups

All of the above extends to any compact group

- E.g. Any finite group; $SO(3)$
General groups

All of the above extends to any compact group

▶ E.g. Any finite group; $SO(3)$

How to even define the model?

▶ Need to add “noise” to a group element $g_i g_j^{-1}$
General groups

All of the above extends to any compact group

- E.g. Any finite group; SO(3)

How to even define the model?

- Need to add “noise” to a group element $g_i g_j^{-1}$

Answer: Use representation theory to represent a group element as a matrix (and then add Gaussian noise)
General groups

All of the above extends to any compact group

▶ E.g. Any finite group; $SO(3)$

How to even define the model?

▶ Need to add “noise” to a group element $g_i g_j^{-1}$

Answer: Use representation theory to represent a group element as a matrix (and then add Gaussian noise)

▶ A representation ρ of G is a way to assign a matrix $\rho(g)$ to each $g \in G$

▶ Formally, a homomorphism $\rho : G \to \text{GL}(\mathbb{C}^d) = \{d \times d \text{ invertible matrices}\}$
General groups

All of the above extends to any compact group

- E.g. Any finite group; $SO(3)$

How to even define the model?

- Need to add “noise” to a group element $g_i g_j^{-1}$

Answer: Use representation theory to represent a group element as a matrix (and then add Gaussian noise)

- A representation ρ of G is a way to assign a matrix $\rho(g)$ to each $g \in G$

- Formally, a homomorphism
 \[
 \rho : G \rightarrow \text{GL}(\mathbb{C}^d) = \{d \times d \text{ invertible matrices}\}
 \]

Frequencies are replaced by irreducible representations of G

- Fourier theory for functions $G \rightarrow \mathbb{C}$
General groups

All of the above extends to any compact group

- E.g. Any finite group; $SO(3)$

How to even define the model?

- Need to add “noise” to a group element $g_i g_j^{-1}$

Answer: Use representation theory to represent a group element as a matrix (and then add Gaussian noise)

- A representation ρ of G is a way to assign a matrix $\rho(g)$ to each $g \in G$

- Formally, a homomorphism $\rho : G \rightarrow \text{GL}(\mathbb{C}^d) = \{d \times d \text{ invertible matrices}\}$

Frequencies are replaced by irreducible representations of G

- Fourier theory for functions $G \rightarrow \mathbb{C}$

For $U(1)$, 1D irreducible representation for each k: $\rho_k(g) = g^k$
Part II: Orbit Recovery
Back to cryo-EM

Image credit: [Singer, Shkolnisky ’11]
Synchronization is not the ideal model for cryo-EM
Back to cryo-EM

Synchronization is not the ideal model for cryo-EM

- The synchronization approach disregards the underlying signal (the molecule)
Synchronization is not the ideal model for cryo-EM

- The synchronization approach disregards the underlying signal (the molecule)
- Our Gaussian synchronization model assumes independent noise on each pair i, j of images, whereas actually there is independent noise on each image
Synchronization is not the ideal model for cryo-EM

- The synchronization approach disregards the underlying signal (the molecule)
- Our Gaussian synchronization model assumes independent noise on each pair i,j of images, whereas actually there is independent noise on each image
- For high noise, it is impossible to reliably recover the rotations
 - So we should not try to estimate the rotations!
Orbit recovery problem

Let G be a **compact** group acting **linearly** and **continuously** on a finite-dimensional real vector space $V = \mathbb{R}^p$.
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

- Compact: e.g. any finite group, $SO(2)$, $SO(3)$
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

- Compact: e.g. any finite group, $SO(2)$, $SO(3)$

- Linear: $\rho : G \to \text{GL}(V) = \{\text{invertible } p \times p \text{ matrices}\}$ (homomorphism)
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

- **Compact**: e.g. any finite group, $SO(2)$, $SO(3)$

- **Linear**: $\rho : G \to \text{GL}(V) = \{\text{invertible } p \times p \text{ matrices}\}$ (homomorphism)

- **Action**: $g \cdot x = \rho(g)x$ for $g \in G, x \in V$
Orbit recovery problem

Let G be a **compact** group acting **linearly** and **continuously** on a finite-dimensional real vector space $V = \mathbb{R}^p$.

- **Compact:** e.g. any finite group, $SO(2)$, $SO(3)$
- **Linear:** $\rho: G \to GL(V) = \{\text{invertible } p \times p \text{ matrices}\}$ (homomorphism)
- **Action:** $g \cdot x = \rho(g)x$ for $g \in G, x \in V$
- **Continuous:** ρ is continuous
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

For $i = 1, \ldots, n$ observe $y_i = g_i \cdot x + \epsilon_i$ where \ldots $g_i \sim \text{Haar}(G)$ (“uniform distribution” on G) $\quad \epsilon_i \sim \mathcal{N}(0, \sigma^2 I_p)$ (noise) \quad Goal: Recover some \tilde{x} in the orbit $\{g \cdot x : g \in G\}$ of x.

24 / 39
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

Unknown signal $x \in V$ (e.g. the molecule)
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

Unknown signal $x \in V$ (e.g. the molecule)

For $i = 1, \ldots, n$ observe $y_i = g_i \cdot x + \epsilon_i$ where...

- $g_i \sim \text{Haar}(G)$ (“uniform distribution” on G)
- $\epsilon_i \sim \mathcal{N}(0, \sigma^2 I_p)$ (noise)
Orbit recovery problem

Let G be a compact group acting linearly and continuously on a finite-dimensional real vector space $V = \mathbb{R}^p$.

Unknown signal $x \in V$ (e.g. the molecule)

For $i = 1, \ldots, n$ observe $y_i = g_i \cdot x + \varepsilon_i$ where...

- $g_i \sim \text{Haar}(G)$ ("uniform distribution" on G)
- $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I_p)$ (noise)

Goal: Recover some \tilde{x} in the orbit $\{g \cdot x : g \in G\}$ of x
Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Image credit: Jonathan Weed

Method of invariants \[1,2\]: measure features of the signal \(x \) that are shift-invariant

Degree-1:
\[\sum_i x_i \text{ (mean)} \]

Degree-2:
\[\sum_i x_i^2, x_1 x_2 + x_2 x_3 + \cdots + x_p x_1, \ldots \text{ (autocorrelation)} \]

Degree-3:
\[x_1 x_2 x_4 + x_2 x_3 x_5 + \cdots \text{ (triple correlation)} \]

Invariant features are easy to estimate from the samples

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2] : measure features of the signal \(x \) that are shift-invariant

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants \([1,2]\) : measure features of the signal \(x \) that are shift-invariant

Degree-1:

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2]: measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \] acts on \(\mathbb{R}^p \) via cyclic shifts

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \epsilon_i \) with \(\epsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2]: measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2] : measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2:

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \] acts on \(\mathbb{R}^p \) via cyclic shifts

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \epsilon_i \) with \(\epsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2] : measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2 \)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \epsilon_i \) with \(\epsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2] : measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2, \quad x_1x_2 + x_2x_3 + \cdots + x_px_1, \ldots \)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants \([1,2]\) : measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2, \ x_1 x_2 + x_2 x_3 + \cdots + x_p x_1, \ldots \) (autocorrelation)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \] acts on \(\mathbb{R}^p \) via cyclic shifts

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2] : measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2, \quad x_1x_2 + x_2x_3 + \cdots + x_p x_1, \ldots \) (autocorrelation)

Degree-3:

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \epsilon_i \) with \(\epsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2] : measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2, \ x_1 x_2 + x_2 x_3 + \cdots + x_p x_1, \ldots \) (autocorrelation)

Degree-3: \(x_1 x_2 x_4 + x_2 x_3 x_5 + \ldots \)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2]: measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2, \quad x_1 x_2 + x_2 x_3 + \cdots + x_p x_1, \ldots \) (autocorrelation)

Degree-3: \(x_1 x_2 x_4 + x_2 x_3 x_5 + \ldots \) (triple correlation)

Special case: multi-reference alignment (MRA)

\[G = \mathbb{Z}/p \text{ acts on } \mathbb{R}^p \text{ via cyclic shifts} \]

For \(i = 1, \ldots, n \) observe \(y_i = g_i \cdot x + \varepsilon_i \) with \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

Method of invariants [1,2]: measure features of the signal \(x \) that are shift-invariant

Degree-1: \(\sum_i x_i \) (mean)

Degree-2: \(\sum_i x_i^2, x_1 x_2 + x_2 x_3 + \cdots + x_p x_1, \ldots \) (autocorrelation)

Degree-3: \(x_1 x_2 x_4 + x_2 x_3 x_5 + \cdots \) (triple correlation)

Invariant features are easy to estimate from the samples

Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d invariants using $n = O(\sigma^2 d)$ samples.

Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d invariants using $n = O(\sigma^{2d})$ samples.
(Lower bound) If $x^{(1)}, x^{(2)}$ agree on all invariants of degree $\leq d - 1$ then $\Omega(\sigma^{2d})$ samples are required to distinguish them.
 ▶ Method of invariants is optimal

Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d invariants using $n = O(\sigma^{2d})$ samples.
(Lower bound) If $x^{(1)}, x^{(2)}$ agree on all invariants of degree $\leq d - 1$ then $\Omega(\sigma^{2d})$ samples are required to distinguish them.

▶ Method of invariants is optimal

Question: What degree d^* of invariants do we need to learn before we can recover (the orbit of) x?

▶ Optimal sample complexity is $n = \Theta(\sigma^{2d^*})$

Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d invariants using $n = O(\sigma^{2d})$ samples.
(Lower bound) If $x^{(1)}, x^{(2)}$ agree on all invariants of degree $\leq d - 1$ then $\Omega(\sigma^{2d})$ samples are required to distinguish them.

▶ **Method of invariants is optimal**

Question: What degree d^* of invariants do we need to learn before we can recover (the orbit of) x?

▶ **Optimal sample complexity is** $n = \Theta(\sigma^{2d^*})$

Answer (for MRA) [1]:

▶ For “generic” x, degree 3 is sufficient, so sample complexity $n = \Theta(\sigma^6)$

Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d invariants using $n = O(\sigma^{2d})$ samples.
(Lower bound) If $x^{(1)}, x^{(2)}$ agree on all invariants of degree $\leq d - 1$ then $\Omega(\sigma^{2d})$ samples are required to distinguish them.

- Method of invariants is optimal

Question: What degree d^* of invariants do we need to learn before we can recover (the orbit of) x?

- Optimal sample complexity is $n = \Theta(\sigma^{2d^*})$

Answer (for MRA) [1]:

- For “generic” x, degree 3 is sufficient, so sample complexity $n = \Theta(\sigma^6)$

- But for a measure-zero set of “bad” signals, need much higher degree (as high as p)

Another viewpoint: mixtures of Gaussians

MRA sample: \(y = g \cdot x + \varepsilon \) with \(g \sim G, \varepsilon \sim \mathcal{N}(0, \sigma^2 I) \)
Another viewpoint: mixtures of Gaussians

MRA sample: $y = g \cdot x + \varepsilon$ with $g \sim G$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

The distribution of y is a (uniform) mixture of $|G|$ Gaussians centered at \{\(g \cdot x : g \in G\)\}
Another viewpoint: mixtures of Gaussians

MRA sample: \(y = g \cdot x + \varepsilon \) with \(g \sim G, \varepsilon \sim \mathcal{N}(0, \sigma^2 I) \)

The distribution of \(y \) is a (uniform) mixture of \(|G|\) Gaussians centered at \(\{g \cdot x : g \in G\} \)

▶ For infinite groups, a mixture of infinitely-many Gaussians
Another viewpoint: mixtures of Gaussians

MRA sample: $y = g \cdot x + \varepsilon$ with $g \sim G$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

The distribution of y is a (uniform) mixture of $|G|$ Gaussians centered at $\{g \cdot x : g \in G\}$

- For infinite groups, a mixture of infinitely-many Gaussians

Method of moments: Estimate moments $\mathbb{E}[y], \mathbb{E}[yy^\top], \ldots, \mathbb{E}[y^\otimes d]$
Another viewpoint: mixtures of Gaussians

MRA sample: \(y = g \cdot x + \varepsilon \) with \(g \sim G, \varepsilon \sim \mathcal{N}(0, \sigma^2 I) \)

The distribution of \(y \) is a (uniform) mixture of \(|G|\) Gaussians centered at \(\{g \cdot x : g \in G\} \)

- For infinite groups, a mixture of infinitely-many Gaussians

Method of moments: Estimate moments \(\mathbb{E}[y], \mathbb{E}[yy^\top], \ldots, \mathbb{E}[y\otimes d] \)

\[
\mathbb{E}[y\otimes k] \sim \mathbb{E}_g [(g \cdot x)\otimes k]
\]
Another viewpoint: mixtures of Gaussians

MRA sample: \(y = g \cdot x + \varepsilon\) with \(g \sim G, \varepsilon \sim \mathcal{N}(0, \sigma^2 I)\)

The distribution of \(y\) is a (uniform) mixture of \(|G|\) Gaussians centered at \(\{g \cdot x : g \in G\}\)

- For infinite groups, a mixture of infinitely-many Gaussians

Method of moments: Estimate moments \(\mathbb{E}[y], \mathbb{E}[yy^\top], \ldots, \mathbb{E}[y^\otimes d]\)

\[\mathbb{E}[y^\otimes k] \sim \mathbb{E}_g[(g \cdot x)^\otimes k]\]

Fact: Moments are equivalent to invariants

- \(\mathbb{E}_g[(g \cdot x)^\otimes k]\) contains the same information as the degree-\(k\) invariant polynomials
Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry, Jonathan Weed

Bandeira, Blum-Smith, Perry, Weed, W., *Estimation under group actions: recovering orbits from invariants*, 2017
Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry, Jonathan Weed

▶ We generalize from MRA to any compact group

Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from invariants, 2017
Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry, Jonathan Weed

▶ We generalize from MRA to any compact group

▶ Again, the method of invariants/moments is optimal

Bandeira, Blum-Smith, Perry, Weed, W., *Estimation under group actions: recovering orbits from invariants*, 2017
Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry, Jonathan Weed

- We generalize from MRA to any compact group
- Again, the method of invariants/moments is optimal
- We give an (inefficient) algorithm that achieves optimal sample complexity: solve polynomial system

Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from invariants, 2017
Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry, Jonathan Weed

- We generalize from MRA to any compact group
- Again, the method of invariants/moments is optimal
- We give an (inefficient) algorithm that achieves optimal sample complexity: solve polynomial system
- To determine what degree of invariants are required, we use invariant theory and algebraic geometry
 - How to tell if polynomial equations have a unique solution

Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from invariants, 2017
Invariant theory

Variables x_1, \ldots, x_p (corresponding to the coordinates of x)
Invariant theory

Variables x_1, \ldots, x_p (corresponding to the coordinates of x)

The invariant ring $\mathbb{R}[x]^G$ is the subring of $\mathbb{R}[x] := \mathbb{R}[x_1, \ldots, x_p]$ consisting of polynomials f such that $f(g \cdot x) = f(x) \ \forall g \in G$.
Invariant theory

Variables x_1, \ldots, x_p (corresponding to the coordinates of x)

The invariant ring $\mathbb{R}[x]^G$ is the subring of $\mathbb{R}[x] := \mathbb{R}[x_1, \ldots, x_p]$ consisting of polynomials f such that $f(g \cdot x) = f(x) \quad \forall g \in G$.

- Aside: A main result of invariant theory is that $\mathbb{R}[x]^G$ is finitely-generated
Invariant theory

Variables x_1, \ldots, x_p (corresponding to the coordinates of x)

The invariant ring $\mathbb{R}[x]^G$ is the subring of $\mathbb{R}[x] := \mathbb{R}[x_1, \ldots, x_p]$ consisting of polynomials f such that $f(g \cdot x) = f(x)$ $\forall g \in G$.

- Aside: A main result of invariant theory is that $\mathbb{R}[x]^G$ is finitely-generated

$\mathbb{R}[x]^G_{\leq d}$ – invariants of degree $\leq d$
Invariant theory

Variables x_1, \ldots, x_p (corresponding to the coordinates of x)

The invariant ring $\mathbb{R}[x]^G$ is the subring of $\mathbb{R}[x] := \mathbb{R}[x_1, \ldots, x_p]$ consisting of polynomials f such that $f(g \cdot x) = f(x)$ $\forall g \in G$.

- Aside: A main result of invariant theory is that $\mathbb{R}[x]^G$ is finitely-generated

$\mathbb{R}[x]^G_{\leq d}$ – invariants of degree $\leq d$

(Simple) algorithm:

- Pick d^* (to be chosen later)
- Using $\Theta(\sigma^{2d^*})$ samples, estimate invariants up to degree d^*:
 learn value $f(x)$ for all $f \in \mathbb{R}[x]^G_{\leq d}$
- Solve for an \hat{x} that is consistent with those values:
 $f(\hat{x}) = f(x)$ $\forall f \in \mathbb{R}[x]^G_{\leq d}$ (polynomial system of equations)
All invariants determine orbit

Theorem [1]: If G is compact, for every $x \in V$, the full invariant ring $\mathbb{R}[x]^G$ determines x up to orbit.

- In the sense that if x, x' do not lie in the same orbit, there exists $f \in \mathbb{R}[x]^G$ that separates them: $f(x) \neq f(x')$

All invariants determine orbit

Theorem [1]: If G is compact, for every $x \in V$, the full invariant ring $\mathbb{R}[x]^G$ determines x up to orbit.

- In the sense that if x, x' do not lie in the same orbit, there exists $f \in \mathbb{R}[x]^G$ that separates them: $f(x) \neq f(x')$.

Corollary: Suppose that for some d, $\mathbb{R}[x]_{\leq d}^G$ generates $\mathbb{R}[x]^G$ (as an \mathbb{R}-algebra). Then $\mathbb{R}[x]_{\leq d}^G$ determines x up to orbit and so sample complexity is $O(\sigma^{2d})$.

All invariants determine orbit

Theorem [1]: If G is compact, for every $x \in V$, the full invariant ring $\mathbb{R}[x]^G$ determines x up to orbit.

- In the sense that if x, x' do not lie in the same orbit, there exists $f \in \mathbb{R}[x]^G$ that separates them: $f(x) \neq f(x')$

Corollary: Suppose that for some d, $\mathbb{R}[x]_{\leq d}^G$ generates $\mathbb{R}[x]^G$ (as an \mathbb{R}-algebra). Then $\mathbb{R}[x]_{\leq d}^G$ determines x up to orbit and so sample complexity is $O(\sigma^{2d})$.

Problem: This is for worst-case $x \in V$. For MRA (cyclic shifts) this requires $d = p$ whereas generic x only requires $d = 3$ [2].

All invariants determine orbit

Theorem [1]: If G is compact, for every $x \in V$, the full invariant ring $\mathbb{R}[x]^G$ determines x up to orbit.

- In the sense that if x, x' do not lie in the same orbit, there exists $f \in \mathbb{R}[x]^G$ that separates them: $f(x) \neq f(x')$

Corollary: Suppose that for some d, $\mathbb{R}[x]_{\leq d}^G$ generates $\mathbb{R}[x]^G$ (as an \mathbb{R}-algebra). Then $\mathbb{R}[x]_{\leq d}^G$ determines x up to orbit and so sample complexity is $O(\sigma^{2d})$.

Problem: This is for worst-case $x \in V$. For MRA (cyclic shifts) this requires $d = p$ whereas generic x only requires $d = 3$ [2].

Actually care about whether $\mathbb{R}[x]_{\leq d}^G$ generically determines $\mathbb{R}[x]^G$

Do polynomials \textit{generically} determine other polynomials?

Say we have $A \subseteq B \subseteq \mathbb{R}[x]$

- (Technically need to assume B is finitely generated)
Do polynomials generically determine other polynomials?

Say we have $A \subseteq B \subseteq \mathbb{R}[x]$

- (Technically need to assume B is finitely generated)

Question: Do the values $\{a(x) : a \in A\}$ generically determine the values $\{b(x) : b \in B\}$?
Do polynomials **generically** determine other polynomials?

Say we have $A \subseteq B \subseteq \mathbb{R}[x]$

- (Technically need to assume B is finitely generated)

Question: Do the values $\{a(x) : a \in A\}$ generically determine the values $\{b(x) : b \in B\}$?

Definition: Polynomials f_1, \ldots, f_m are **algebraically independent** if there is no $P \in \mathbb{R}[y_1, \ldots, y_m]$ with $P(f_1, \ldots, f_m) \equiv 0$.

- "Generic": x lies in a particular full-measure set.
Do polynomials **generically** determine other polynomials?

Say we have $A \subseteq B \subseteq \mathbb{R}[x]$

- (Technically need to assume B is finitely generated)

Question: Do the values $\{a(x) : a \in A\}$ generically determine the values $\{b(x) : b \in B\}$?

Definition: Polynomials f_1, \ldots, f_m are algebraically independent if there is no $P \in \mathbb{R}[y_1, \ldots, y_m]$ with $P(f_1, \ldots, f_m) \equiv 0$.

Definition: For $U \subseteq \mathbb{R}[x]$, the **transcendence degree** $\text{trdeg}(U)$ is the number of algebraically independent polynomials in U.

31 / 39
Do polynomials generically determine other polynomials?

Say we have $A \subseteq B \subseteq \mathbb{R}[x]$

- (Technically need to assume B is finitely generated)

Question: Do the values $\{a(x) : a \in A\}$ generically determine the values $\{b(x) : b \in B\}$?

Definition: Polynomials f_1, \ldots, f_m are algebraically independent if there is no $P \in \mathbb{R}[y_1, \ldots, y_m]$ with $P(f_1, \ldots, f_m) \equiv 0$.

Definition: For $U \subseteq \mathbb{R}[x]$, the transcendence degree $\text{trdeg}(U)$ is the number of algebraically independent polynomials in U.

Answer: Suppose $\text{trdeg}(A) = \text{trdeg}(B)$. If x is “generic” then the values $\{a(x) : a \in A\}$ determine a finite number of possibilities for the entire collection $\{b(x) : b \in B\}$.

- “Generic”: x lies in a particular full-measure set
How to test algebraic independence?

This is actually easy!

Theorem (Jacobian criterion):
Polynomials $f_1, \ldots, f_m \in \mathbb{R}[x_1, \ldots, x_p]$ are algebraically independent if and only if the $m \times p$ Jacobian matrix $J_{ij} = \frac{\partial f_i}{\partial x_j}$ has full row rank. (Still true if you evaluate J at a generic point x.)

▶ Why: Tests whether map $(x_1, \ldots, x_p) \mapsto (f_1(x), \ldots, f_m(x))$ is locally surjective.
How to test algebraic independence?

This is actually easy!
How to test algebraic independence?

This is actually easy!

Theorem (Jacobian criterion):
Polynomials \(f_1, \ldots, f_m \in \mathbb{R}[x_1, \ldots, x_p] \) are algebraically independent if and only if the \(m \times p \) Jacobian matrix \(J_{ij} = \frac{\partial f_i}{\partial x_j} \) has full row rank. (Still true if you evaluate \(J \) at a generic point \(x \).)
How to test algebraic independence?

This is actually easy!

Theorem (Jacobian criterion):

Polynomials $f_1, \ldots, f_m \in \mathbb{R}[x_1, \ldots, x_p]$ are algebraically independent if and only if the $m \times p$ Jacobian matrix $J_{ij} = \frac{\partial f_i}{\partial x_j}$ has full row rank. (Still true if you evaluate J at a generic point x.)

- Why: Tests whether map $(x_1, \ldots, x_p) \mapsto (f_1(x), \ldots, f_m(x))$ is locally surjective
Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x.
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group \(G \) and action on \(V \)) and outputs the degree \(d^* \) of invariants required for generic list recovery.

- List recovery: output a finite list \(\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots \), one of which (approximately) lies in the orbit of the true \(x \)
- List recovery may be good enough in practice?

Procedure:
Generic list recovery

Our **main result** is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for **generic list recovery**.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Procedure:

- Need to test whether $\mathbb{R}[x]_G^{\leq d}$ determines $\mathbb{R}[x]^G$ (generically)
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for **generic list recovery**.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Procedure:

- Need to test whether $\mathbb{R}[x]^G_{\leq d}$ determines $\mathbb{R}[x]^G$ (generically)
- So need to check if $\text{trdeg}(\mathbb{R}[x]^G_{\leq d}) = \text{trdeg}(\mathbb{R}[x]^G)$
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x.
- List recovery may be good enough in practice?

Procedure:

- Need to test whether $\mathbb{R}[x]^G_{\leq d}$ determines $\mathbb{R}[x]^G$ (generically).
- So need to check if $\text{trdeg}(\mathbb{R}[x]^G_{\leq d}) = \text{trdeg}(\mathbb{R}[x]^G)$.
- $\text{trdeg}(\mathbb{R}[x]^G)$ is easy: $\dim(x) - \dim(\text{orbit})$.
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Procedure:

- Need to test whether $\mathbb{R}[x]_{\leq d}^G$ determines $\mathbb{R}[x]^G$ (generically)
- So need to check if $\text{trdeg}(\mathbb{R}[x]_{\leq d}^G) = \text{trdeg}(\mathbb{R}[x]^G)$
- $\text{trdeg}(\mathbb{R}[x]^G)$ is easy: $\dim(x) - \dim(\text{orbit})$
- $\text{trdeg}(\mathbb{R}[x]_{\leq d}^G)$ via Jacobian criterion
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Comments:
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Comments:

- For e.g. MRA (cyclic shifts), need to test each p separately on a computer
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for \textit{generic list recovery}.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Comments:

- For e.g. MRA (cyclic shifts), need to test each p separately on a computer
- Not an efficient algorithm to solve any particular instance
Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list $\hat{x}^{(1)}, \hat{x}^{(2)}, \ldots$, one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Comments:

- For e.g. MRA (cyclic shifts), need to test each p separately on a computer
- Not an efficient algorithm to solve any particular instance
- There is also an algorithm to bound the size of the list (or test for unique recovery), but it is not efficient (Gröbner bases)
Generalized orbit recovery problem

Extensions:

Projection (e.g. cryo-EM):

\[y_i = \Pi(g_i \cdot x) + \epsilon_i \]

\[\Pi : V \rightarrow W \quad \text{linear} \]

\[\epsilon_i \sim N(0, \sigma^2 I) \]

Heterogeneity:

\[K \text{ signals } x(1), \ldots, x(K) \]

Mixing weights \(\{w_1, \ldots, w_K\} \in \Delta K \)

\[y_i = \Pi(g_i \cdot x(k_i)) + \epsilon_i \]

\[k_i \sim \{1, \ldots, K\} \quad \text{according to } w \]

Same methods apply!

Order-d moments now only give access to a particular subspace of \(R^G \)

For heterogeneity, work over a bigger group \(G^K \) acting on \((x(1), \ldots, x(K)) \in V \oplus K \).
Generalized orbit recovery problem

Extensions:

- Projection (e.g. cryo-EM):
 - Observe \(y_i = \Pi(g_i \cdot x) + \varepsilon_i \)
 - \(\Pi : V \rightarrow W \) linear
 - \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)
Generalized orbit recovery problem

Extensions:

- **Projection (e.g. cryo-EM):**
 - Observe $y_i = \Pi(g_i \cdot x) + \varepsilon_i$
 - $\Pi : V \rightarrow W$ linear
 - $\varepsilon_i \sim N(0, \sigma^2 I)$

- **Heterogeneity:**
 - K signals $x^{(1)}, \ldots, x^{(K)}$
 - Mixing weights $(w_1, \ldots, w_K) \in \Delta_K$
 - Observe $y_i = \Pi(g_i \cdot x^{(k_i)}) + \varepsilon_i$
 - $k_i \sim \{1, \ldots, K\}$ according to w
Generalized orbit recovery problem

Extensions:

- **Projection (e.g. cryo-EM):**
 - Observe $y_i = \Pi(g_i \cdot x) + \varepsilon_i$
 - $\Pi : V \rightarrow W$ linear
 - $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$

- **Heterogeneity:**
 - K signals $x^{(1)}, \ldots, x^{(K)}$
 - Mixing weights $(w_1, \ldots, w_K) \in \Delta_K$
 - Observe $y_i = \Pi(g_i \cdot x^{(k_i)}) + \varepsilon_i$
 - $k_i \sim \{1, \ldots, K\}$ according to w

Same methods apply!
Generalized orbit recovery problem

Extensions:

- **Projection (e.g. cryo-EM):**
 - Observe \(y_i = \Pi(g_i \cdot x) + \varepsilon_i \)
 - \(\Pi : V \rightarrow W \) linear
 - \(\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I) \)

- **Heterogeneity:**
 - \(K \) signals \(x^{(1)}, \ldots, x^{(K)} \)
 - Mixing weights \((w_1, \ldots, w_K) \in \Delta_K \)
 - Observe \(y_i = \Pi(g_i \cdot x^{(k_i)}) + \varepsilon_i \)
 - \(k_i \sim \{1, \ldots, K\} \) according to \(w \)

Same methods apply!

- **Order-\(d \) moments now only give access to a particular subspace of \(\mathbb{R}[x]^G \)**
Generalized orbit recovery problem

Extensions:

- **Projection (e.g. cryo-EM):**
 - Observe $y_i = \Pi(g_i \cdot x) + \varepsilon_i$
 - $\Pi : V \rightarrow W$ linear
 - $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$

- **Heterogeneity:**
 - K signals $x^{(1)}, \ldots, x^{(K)}$
 - Mixing weights $(w_1, \ldots, w_K) \in \Delta_K$
 - Observe $y_i = \Pi(g_i \cdot x^{(k_i)}) + \varepsilon_i$
 - $k_i \sim \{1, \ldots, K\}$ according to w

Same methods apply!

- Order-d moments now only give access to a particular subspace of $\mathbb{R}[x]^G$

- For heterogeneity, work over a bigger group G^K acting on $(x^{(1)}, \ldots, x^{(K)}) \in V^{\oplus K}$
Results: cryo-EM

Our methods show that for cryo-EM, generic list recovery is possible at degree 3.
Results: cryo-EM

Our methods show that for cryo-EM, generic list recovery is possible at degree 3

So information-theoretic sample complexity is $\Theta(\sigma^6)$
Results: cryo-EM

Our methods show that for cryo-EM, generic list recovery is possible at degree 3

So information-theoretic sample complexity is $\Theta(\sigma^6)$

Ongoing work: polynomial time algorithm for cryo-EM
Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with $O(\sigma^6)$ samples, can estimate the third moment:

$$T_3(x) = \sum_{g \in G} (g \cdot x)^{\otimes 3}$$

Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with $O(\sigma^6)$ samples, can estimate the third moment:

$$T_3(x) = \sum_{g \in G} (g \cdot x) \otimes^3$$

This is an instance of tensor decomposition: Given $\sum_{i=1}^m a_i \otimes^3$ for some $a_1, \ldots, a_m \in \mathbb{R}^p$, recover $\{a_i\}$

Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with $O(\sigma^6)$ samples, can estimate the third moment:

$$T_3(x) = \sum_{g \in G} (g \cdot x) \otimes^3$$

This is an instance of tensor decomposition: Given $\sum_{i=1}^{m} a_i \otimes^3$ for some $a_1, \ldots, a_m \in \mathbb{R}^p$, recover $\{a_i\}$

For MRA: since $m \leq p$ ("undercomplete") can apply Jennrich’s algorithm to decompose tensor efficiently [1]

Example: heterogeneous MRA

MRA with multiple signals $x^{(1)}, \ldots, x^{(K)}$

$$T_d(x) = \sum_{k=1}^{K} \sum_{g \in G} (g \cdot x^{(k)}) \otimes d$$

[1] Perry, Weed, Bandeira, Rigollet, Singer '17
[3] Ma, Shi, Steurer '16
Example: heterogeneous MRA

MRA with multiple signals $x^{(1)}, \ldots, x^{(K)}$

$$T_d(x) = \sum_{k=1}^{K} \sum_{g \in G} (g \cdot x^{(k)}) \otimes d$$

Jennrich’s algorithm works if given 5th moment $\leadsto n = O(\sigma^{10})$ [1]

[1] Perry, Weed, Bandeira, Rigollet, Singer ’17
Example: heterogeneous MRA

MRA with multiple signals $x^{(1)}, \ldots, x^{(K)}$

$$T_d(x) = \sum_{k=1}^{K} \sum_{g \in G} (g \cdot x^{(k)}) \otimes d$$

Jennrich’s algorithm works if given 5th moment $\Leftrightarrow n = O(\sigma^{10})$ [1]

Information-theoretically, 3rd moment suffices if $K \leq p/6$

[1] Perry, Weed, Bandeira, Rigollet, Singer ’17
Example: heterogeneous MRA

MRA with multiple signals \(x^{(1)}, \ldots, x^{(K)}\)

\[
T_d(x) = \sum_{k=1}^{K} \sum_{g \in G} (g \cdot x^{(k)}) \otimes d
\]

Jennrich’s algorithm works if given 5th moment \(\sim n = O(\sigma^{10})\) [1]

Information-theoretically, 3rd moment suffices if \(K \leq p/6\)

If signals \(x^{(k)}\) are random (i.i.d. Gaussian), conjectured that efficient recovery is possible from 3rd moment iff \(K \leq \sqrt{p}\) [2]

[1] Perry, Weed, Bandeira, Rigollet, Singer ‘17
Example: heterogeneous MRA

MRA with multiple signals $x^{(1)}, \ldots, x^{(K)}$

$$T_d(x) = \sum_{k=1}^{K} \sum_{g \in G} (g \cdot x^{(k)}) \otimes d$$

Jennrich’s algorithm works if given 5th moment $\leadsto n = O(\sigma^{10})$ [1]

Information-theoretically, 3rd moment suffices if $K \leq p/6$

If signals $x^{(k)}$ are random (i.i.d. Gaussian), conjectured that efficient recovery is possible from 3rd moment iff $K \leq \sqrt{p}$ [2]

New result (with A. Moitra): if $K \leq \sqrt{p}/\text{polylog}(p)$ then for random signals, efficient recovery is possible from 3rd moment

- Based on random overcomplete 3-tensor decomposition [3]

[1] Perry, Weed, Bandeira, Rigollet, Singer ’17
Acknowledgements
Acknowledgements

- Ankur Moitra
Acknowledgements

- Ankur Moitra
- Michel Goemans
Acknowledgements

▶ Ankur Moitra
▶ Michel Goemans
▶ Philippe Rigollet
Acknowledgements

- Ankur Moitra
- Michel Goemans
- Philippe Rigollet
- Afonso Bandeira
Acknowledgements

- Ankur Moitra
- Michel Goemans
- Philippe Rigollet
- Afonso Bandeira
- Collaborators
Acknowledgements

- Ankur Moitra
- Michel Goemans
- Philippe Rigollet
- Afonso Bandeira
- Collaborators
- Family
Acknowledgements

- Ankur Moitra
- Michel Goemans
- Philippe Rigollet
- Afonso Bandeira
- Collaborators
- Family
- Thank you!