Estimated transversality in symplectic geometry and projective maps

Denis AUROUX

Ample bundles over almost-complex manifolds

GW invariants: holomorphic maps from complex manifolds to a symplectic manifold

Dual point of view: (approx.) holomorphic maps from a symplectic manifold to complex manifolds (Donaldson)

Tool: estimated transversality for approx. holomorphic sections of very ample bundles

 $(\Rightarrow \text{good linear systems, maps to } \mathbb{CP}^m)$

 (X^{2n}, J) almost-complex, compact

$$(L_k, \nabla_k)$$
 line bundles are asympt. very ample if curvature
$$\begin{cases} iF_k(v, Jv) > c_k |v|^2, & c_k \to +\infty \\ F_k^{(0,2)} = O(1) \end{cases}$$

 $\omega_k = iF_k$ is symplectic, J is ω_k -tame.

Example: $c_1(L_k) = k[\omega]$ and J is ω -compatible.

Asympt. holomorphic sections of L_k :

$$\begin{cases} |s_k|_{C^r,g_k} = O(1) & \text{(rescaling : } g_k = c_k g) \\ |\bar{\partial} s_k|_{C^r,g_k} = O(c_k^{-1/2}) \end{cases}$$

curvature $\to +\infty \Rightarrow look into X$ at small scale \Rightarrow non-integrability $\rightarrow 0$.

Estimated transversality of jets

Asympt. holomorphic sections $s_{k,0}, \ldots, s_{k,m} \in \Gamma(L_k)$ \Rightarrow approx. holomorphic maps $f_k : X \to \mathbb{CP}^m$ Need estimated transversality for the jets of these maps.

 $E_k = \mathbb{C}^{m+1} \otimes L_k$ asympt. very ample vector bundles, holom. jet bundles $\mathcal{J}^r E_k = \bigoplus_{j=0}^r (T^* X^{(1,0)})_{\text{sym}}^{\otimes j} \otimes E_k$.

 S_k = asympt. holomorphic stratifications of $\mathcal{J}^r E_k$: finite Whitney stratifications, transverse to the fibers; all strata are asympt. holomorphic submanifolds, with bounded curvature away from lower-dimensional strata.

The jet $j^r s_k$ is η -transverse to \mathcal{S}_k if $\operatorname{dist}(j^r s_k(x), S_{k,a}) < \eta \Rightarrow$ the graph of $j^r s_k$ is transverse at x to $TS_{k,a}$, with minimum angle $> \eta$.

Theorem 1

 S_k asympt. holomorphic stratifications of $\mathcal{J}^r E_k$; $\delta > 0$; s_k asympt. holomorphic sections of E_k \Rightarrow for large enough k, \exists asympt. holomorphic sections σ_k of E_k s.t.

- (1) $|\sigma_k s_k|_{C^{r+1}, q_k} < \delta$;
- (2) $j^r \sigma_k$ is $\eta_{(\delta)}$ -transverse to \mathcal{S}_k .

Estimated transversality of jets

Ingredients of proof:

- ◆ transversality is an open property
 ⇒ transv. to all strata by successive perturbations
- start with lowest dim. strata; S_k are Whitney \Rightarrow only work away from lower-dim. strata
- very localized asympt. holomorphic sections of L_k in coords.: $s_{k,x,I}(z) = z_1^{i_1} \dots z_n^{i_n} \exp(-\frac{1}{4}c_k|z|^2)$ \Rightarrow local trivializations of $\mathcal{J}^r E_k$
- local transversality result for functions $\mathbb{C}^n \to \mathbb{C}^p$ (Donaldson)
 - \Rightarrow a localized small perturbation of s_k yields estimated transversality to $S_{k,a}$ over a small ball
- globalization argument
 ⇒ using openness, combine local perturbations to obtain transversality everywhere

Theorem 1 also holds for families indexed by $t \in [0, 1]$ \Rightarrow objects are canonical up to isotopy (and even independent of the chosen J as long as L_k remain asympt. very ample)

Boardman stratifications of holomorphic jet spaces

Boardman stratification of jets of holomorphic maps $\mathbb{C}^n \to \mathbb{C}^m$:

 $f:\mathbb{C}^n\to\mathbb{C}^m$ holomorphic \Rightarrow singular loci

$$\Sigma_i(f) = \{x, \dim \operatorname{Ker} df(x) = i\}$$

$$\Sigma_{i_1,\dots,i_r}(f) = \Sigma_{i_r}(f_{|\Sigma_{i_1,\dots,i_{r-1}}(f)})$$

 \Rightarrow stratification of $\mathcal{J}^r(\mathbb{C}^n,\mathbb{C}^m)$ by Σ_I .

Sections
$$s_k$$
 of $E_k = \mathbb{C}^{m+1} \otimes L_k$
 $\Rightarrow f_k = \mathbb{P}s_k : X - s_k^{-1}(0) \to \mathbb{CP}^m$

 $j^r s_k = (s_k, \partial s_k, \partial \partial s_k, \dots)$; use local approx. holom. coordinates to identify $\mathcal{J}^r(X, \mathbb{CP}^m)$ with $\mathcal{J}^r(\mathbb{C}^n, \mathbb{C}^m)$

 \Rightarrow Boardman stratification of $\mathcal{J}^r E_k$:

$$- S_0 = \{j^r s(x), \ s(x) = 0\}$$

$$-S_I = \{j^r s(x), \ s(x) \neq 0, \ j^r \mathbb{P} s(x) \in \Sigma_I\}$$

These stratifications are asympt. holomorphic

 \Rightarrow by Theorem 1, for large k we get $s_k \in \Gamma(E_k)$ s.t. $j^r s_k$ uniformly transverse to Boardman stratifications.

Generic projective maps

 s_k asympt. holomorphic sections of $\mathbb{C}^{m+1} \otimes L_k$, $j^r s_k$ uniformly transverse to Boardman stratifications:

• the base loci $Z_k = s_k^{-1}(0)$ are smooth symplectic codim. 2m + 2 submanifolds.

Local model: $f_k(z_1, ..., z_n) = (z_1 : z_2 : ... : z_{m+1})$

- the holomorphic r-jets of $f_k = \mathbb{P}s_k$ behave similarly to those of generic holomorphic maps between complex manifolds
- singular loci $\Sigma_I(f_k)$ = stratified symplectic submanifolds of $X Z_k$, of the expected codimension

Away from singular loci, estimated transversality + asympt. holomorphicity $\Rightarrow \bar{\partial} f_k \ll \partial f_k \Rightarrow$ holomorphic local models for f_k

Near $\Sigma_I(f_k)$, need to ensure $\bar{\partial} f_k \ll \partial f_k \Rightarrow$ obtain some control over $\bar{\partial} f_k$.

Idea: the antiholomorphic part of the jet of f_k should vanish in the normal directions to $\Sigma_I(f_k)$.

Generic projective maps

Suitable perturbation to kill the antiholomorphic jet of f_k along normal directions to singular loci

 \Rightarrow obtain approx. holomorphic projective maps, topologically conjugate near every point of X to generic holomorphic maps between complex manifolds (in local approx. holomorphic coordinates).

- m = 1: symplectic Lefschetz pencils (Donaldson)
- m = 2: maps to \mathbb{CP}^2 (D. A.)
- $m \ge 2n$: projective immersions/embeddings (Muñoz-Presas-Sols)
- general case: in progress

Symplectic Lefschetz pencils

 $(s_0, s_1) \in \Gamma(\mathbb{C}^2 \otimes L_k)$ suitably chosen \Rightarrow symplectic Lefschetz pencil:

$$\Sigma_{\alpha} = \{x \in X, \ s_0 + \alpha s_1 = 0\} \ (\alpha \in \mathbb{CP}^1)$$

symplectic hypersurfaces, smooth except for finitely many singular points.

Base locus
$$Z = \{s_0 = s_1 = 0\}$$
 (codim. 4).

Projective map $f = (s_0: s_1): X - Z \to \mathbb{CP}^1:$ local model $f(z) = z_1^2 + \cdots + z_n^2$ near critical points.

Blow up $Z \Rightarrow$ Lefschetz fibration $\hat{X} \to \mathbb{CP}^1$

Monodromy = $\theta : \pi_1(\mathbb{C} - \{ pts \}) \to \text{Map}^{\omega}(\Sigma^{2n-2}, Z)$ $\text{Map}^{\omega}(\Sigma, Z) := \pi_0(\{ \phi \in \text{Symp}(\Sigma, \omega), \phi_{|U(Z)} = \text{Id} \})$ $\Rightarrow \text{symplectic invariants.}$

Symplectic maps to \mathbb{CP}^2

 $(s_0, s_1, s_2) \in \Gamma(\mathbb{C}^3 \otimes L_k)$ suitably chosen $\Rightarrow f = (s_0 : s_1 : s_2) : X - Z \to \mathbb{CP}^2$.

Fibers = codimension 4 symplectic submanifolds, intersecting at the base locus Z (codim. 6), singular along a smooth symplectic curve $R \subset X$.

Local singular models near R:

- 1. $(z_1, \ldots, z_n) \mapsto (z_1^2 + \cdots + z_{n-1}^2, z_n)$ points where R is transverse to the fibers of f
- 2. $(z_1, \ldots, z_n) \mapsto (z_1^3 z_1 z_n + z_2^2 + \cdots + z_{n-1}^2, z_n)$ cusp points of D = f(R)

The critical curve D = f(R) is symplectic, with nodes (both orientations) and cusp singularities.

Fiber above a smooth point of D = obtained by collapsing a vanishing cycle (Lagrangian S^{n-2}) in the generic fiber Σ^{2n-4} .

Monodromy around D:

$$\bar{\theta}: \pi_1(\mathbb{C}^2 - D) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, Z)$$

 $\bar{\theta}$ (geometric generator) = generalized Dehn twist.

Up to cancellation of nodes in D, for $k \gg 0$ the topology of f_k is a symplectic invariant.

Monodromy and braid groups

Perturbation $\Rightarrow D = \text{singular branched cover of } \mathbb{CP}^1$.

Monodromy = $\rho : \pi_1(\mathbb{C} - \{ pts \}) \to B_d$ (braid group) Monodromy around each crit. point = $(half\text{-twist})^{\delta}$, $\delta \in \{-2, 1, 2, 3\}$:

- $\bullet \quad \delta = 1$
- \bullet $\delta = 2$
- $\bullet \quad \searrow \quad \delta = 3$
- $\bullet \quad \mathbf{\times} \quad \delta = -2$

(Moishezon-Teicher, Auroux-Katzarkov)

The higher dimensional case

Monodromies of $f: X - Z \to \mathbb{CP}^2$:

- $\rho : \pi_1(\mathbb{C} \{ \text{pts} \}) \to B_d \text{ (describes } D)$
- $\bar{\theta}: \pi_1(\mathbb{C}^2 D) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, Z)$ (describes f)

Restricting to the hypersurface $W^{2n-2} = s_2^{-1}(0)$, $f_{|W} = (s_0 : s_1) : W - Z \to \mathbb{CP}^1$ is a symplectic Lefschetz pencil, monodromy

$$\theta = \bar{\theta} \circ i_* : \pi_1(\mathbb{C} - \{q_1, \dots, q_d\}) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, Z)$$

The monodromy invariants (ρ, θ) determine the manifold X up to symplectomorphism.

Dimensional induction

 (X^{2n}, ω) symplectic, $s_0, \ldots, s_n \in \Gamma(L_k)$ well-chosen.

- $\Sigma_r = \{s_{r+1} = \cdots = s_n = 0\}$ smooth symplectic submanifold, dim $\Sigma_r = 2r$, $\Sigma_n = X$.
- s_{r-1} and s_r define a SLP on Σ_r , generic fiber Σ_{r-1} , base locus Σ_{r-2} . Monodromy:

$$\theta_r: \pi_1(\mathbb{C} - \{pts\}) \to \mathrm{Map}^{\omega}(\Sigma_{r-1}, \Sigma_{r-2})$$

• $(s_{r-2}: s_{r-1}: s_r): \Sigma_r - \Sigma_{r-3} \to \mathbb{CP}^2$, singular locus $D_r \subset \mathbb{CP}^2$, deg $D_r = d_{r-1}$. Monodromy:

$$\rho_r: \pi_1(\mathbb{C} - \{pts\}) \to B_{d_{r-1}}$$
 and θ_{r-1}

• ρ_r and θ_{r-1} (description of Σ_r by a map to \mathbb{CP}^2) determine θ_r (description of Σ_r by a SLP) explicitly.

Symplectic invariants characterizing X:

$$(\theta_r, \rho_{r+1}, \rho_{r+2}, \dots, \rho_n), \forall 1 \leq r \leq n.$$

- r = n : SLP
- r = 2 : n 2 braid factorizations + word in Map_{q,N}
- r = 1 : n 1 braid factorizations + word in S_N .