Estimated transversality in
symplectic geometry and
projective maps
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Ample bundles over almost-complex
manifolds

GW invariants: holomorphic maps from complex man-
ifolds to a symplectic manifold

Dual point of view: (approx.) holomorphic maps from a
symplectic manifold to complex manifolds (Donaldson)

Tool: estimated transversality for approx. holomorphic
sections of very ample bundles

(= good linear systems, maps to CP™)

(X2, J) almost-complex, compact
(Lg, Vi) line bundles are asympt. very ample if
iy (v, Jv) > cip|vf?, ¢ — +oo

curvature
{FS”” = 0(1)

wi = 1F} 1s symplectic, J is wy-tame.

Example: ¢;(Lg) = klw| and J is w-compatible.

Asympt. holomorphic sections of Ly, :

sklcr g, = O(1) (rescaling : g = ci g)

st cr g, = Ol '?)

curvature — +o0o = look into X at small scale
= non-integrability — 0.



Estimated transversality of jets

Asympt. holomorphic sections sy, . .., Sgm € I'(Lg)
= approx. holomorphic maps f; : X — CP™

Need estimated transversality for the jets of these maps.

E, = C""! @ L, asympt. very ample vector bundles,

r

holom. jet bundles J"Ey, = @ (T*X 10 @ B,

sym

7=0
S = asympt. holomorphic stratifications of J" E.

finite Whitney stratifications, transverse to the fibers :
all strata are asympt. holomorphic submanifolds, with
bounded curvature away from lower-dimensional strata.

The jet 3"s; is n-transverse to Sy if
dist(j"sk(z), Sk.a) < m = the graph of j"sj is trans-
verse at x to 1S 4, with minimum angle > 7.

Theorem 1
Si asympt. holomorphic stratifications of J"E}. ;
0 > 0; s, asympt. holomorphic sections of Ej
= for large enough k, 3 asympt. holomorphic sec-
tions o of B s.t.
(1) |ow = sklerery, <0
(2) j"op 1s ng-transverse to Sy.



Estimated transversality of jets

Ingredients of proof :

o transversality is an open property
= transv. to all strata by successive perturbations

o start with lowest dim. strata ; S, are Whitney
= only work away from lower-dim. strata

o very localized asympt. holomorphic sections of Ly,
in coords.: s, 7(z) = 2" .. 2 exp(—icy|z[?)
= local trivializations of J"E}

e local transversality result for functions C" — C?
(Donaldson)
= a localized small perturbation of s; yields
estimated transversality to S, over a small ball

« globalization argument
= using openness, combine local perturbations to
obtain transversality everywhere

Theorem 1 also holds for families indexed by t € |0, 1]
= objects are canonical up to isotopy

(and even independent of the chosen J as long as Ly
remain asympt. very ample)



Boardman stratifications of
holomorphic jet spaces

Boardman stratification of jets of holomorphic maps
Cr— C":
f : C" — C™ holomorphic = singular loci
il f) ==, dimKerdf( ) =1}
iy 1 (D)

= stratification of J"(C",C™) by 3.

Sections s; of B = C"M @ L,
= [ =Ps; : X — 3,;1(0) — CP™

7"sg = (Sk, Osg, 0sy, . .. ) ; use local approx. holom.
coordinates to identify J"(X, CP") with J"(C", C™)
= Boardman stratification of J"E}. :

- S = {J"s(z), s(x) =0}
- S =A{7"s(x), s(x) #0, j'Ps(x) € X1}

These stratifications are asympt. holomorphic

= by Theorem 1, for large k we get s, € ['(E}) s.t.
9" s uniformly transverse to Boardman stratifications.



Generic projective maps

s;, asympt. holomorphic sections of C"™! @ Ly,
7" s uniformly transverse to Boardman stratifications :

e the base loci Z;, = s;'(0) are smooth symplectic
codim. 2m + 2 submanifolds.
Local model: fi(z1,...,2,) = (21:20:. .. Z;ma1)

o the holomorphic r-jets of f;. = PPs; behave similarly
to those of generic holomorphic maps between complex
manifolds

o singular loci ¥y( fi) = stratified symplectic submani-
folds of X — Z;., of the expected codimension

Away from singular loci, estimated transversality +
asympt. holomorphicity = 0f; < 0 = holomorphic
local models for f;

Near Y;(f3), need to ensure df;, < Ofr = obtain
some control over 0 fj.

Idea: the antiholomorphic part of the jet of f; should
vanish in the normal directions to 27(f).



Generic projective maps

Suitable perturbation to kill the antiholomorphic jet of
fi along normal directions to singular loci

= obtain approx. holomorphic projective maps, topo-
logically conjugate near every point of X to generic
holomorphic maps between complex manifolds
(in local approx. holomorphic coordinates).

«m = 1 : symplectic Lefschetz pencils (Donaldson)

em =2 : maps to CP* (D.A))

«m > 2n : projective immersions/embeddings
(Munoz-Presas-Sols)

o general case : in progress



Symplectic Lefschetz pencils

(s0,51) € I'(C* ® Ly) suitably chosen
= symplectic Letschetz pencil :

Yo ={r€X, so+as =0} (acCP

symplectic hypersurfaces, smooth except for finitely many
singular points.
Base locus Z = {sy = s1 = 0} (codim. 4).

Projective map f = (sp:s1) : X — Z — CP*
local model f(z) = 2§ + -+ + 22 near critical points.

Blow up Z = Lefschetz fibration X — CP!

Vi X i)

0 0 0

monodromy =

CP* ng (generalized) Dehn twist

Monodromy = 6 : 7 (C — {pts}) — Map“ (X% Z)

Mapw<27 Z) = 7'('0({@5 S Symp<27 LU), ¢|U(Z) — Id})
= symplectic invariants.




Symplectic maps to CP?

(s0, 51, 52) € I'(C* ® Ly) suitably chosen
= f=(s0:51:5): X — 7 — CP°
Fibers = codimension 4 symplectic submanifolds,

intersecting at the base locus Z (codim. 6),
singular along a smooth symplectic curve R C X.

Local singular models near R :

Lo(21,000y20) = (254 4+ 221, 2)
points where R is transverse to the fibers of f
2. (21, .y zn) = (2 — 21z + 25+ -+ 221, 2p)

cusp points of D = f(R)

The critical curve D = f(R) is symplectic, with nodes
(both orientations) and cusp singularities.

Fiber above a smooth point of D = obtained by
collapsing a vanishing cycle (Lagrangian S 2) in the
generic fiber Y274,

Monodromy around D :

0 m(C* — D) — Map®”(X* %, Z)

0(geometric generator) = generalized Dehn twist.

Up to cancellation of nodes in D, for £ > 0 the
topology of f; is a symplectic invariant.



Monodromy and braid groups

Perturbation = D = singular branched cover of CP*.

CP? — {o0}

deg D = d

opl JWZ(QZQI$1I[L’2)I—>(£EQICL’1)

Monodromy = p : m(C — {pts}) — By (braid group)

Monodromy around each crit. point = (half—twist)5,
5€{-21,2,3}

* (5:1 1 o>
o X =2 [] oo
e — =3 [>T o ]
o X d==2 [| o o]

$

)

NN

(Moishezon-Teicher, Auroux-Katzarkov)



The higher dimensional case

Monodromies of f: X — Z — CP?:
e p:m(C — {pts}) — By (describes D)

0 :m(C%*— D) — Map“(X*~1 Z) (describes f)
Restricting to the hypersurface W22 = s,1(0),

fw = (s0 1 81) W -2 — CP' is a symplectic
Lefschetz pencil, monodromy

0=0o0i,:m(C—{q,...,q}) — Map”(¥*"~* Z)

CP* CP
The monodromy invariants (p, ) determine the mani-
fold X up to symplectomorphism.
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Dimensional induction

(X?", w) symplectic, s, ..., s, € I'(L;) well-chosen.

e, = {821 = -+ = s, = 0} smooth symplectic
submanifold, dim >, = 2r, >, = X.

e 5,1 and s, define a SLP on X, generic fiber X, _q,
base locus >, _o. Monodromy :

0, : 7T1<(C — {pt8}> — Mapw<2r—17 Zr—2>

e (Sp 918 1:8:) Xy — 23 — CP?, singular locus
D, c CP? deg D, = d,_;. Monodromy :

pr:m(C—{pts}) = By, and 6,

e pr and 6,1 (description of X, by a map to (CIP’Q) de-
termine 6, (description of X3, by a SLP) explicitly.

Symplectic invariants characterizing X :

(O prats Praoy -y pn), V1 <1 < m.
er =n: SLP
o =2:n — 2 braid factorizations + word in Map, y
e = 1: n — 1 braid factorizations + word in Sy.
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