Estimated transversality in symplectic geometry and projective maps Denis AUROUX #### Ample bundles over almost-complex manifolds GW invariants: holomorphic maps from complex manifolds to a symplectic manifold Dual point of view: (approx.) holomorphic maps from a symplectic manifold to complex manifolds (Donaldson) Tool: estimated transversality for approx. holomorphic sections of very ample bundles $(\Rightarrow \text{good linear systems, maps to } \mathbb{CP}^m)$ (X^{2n}, J) almost-complex, compact $$(L_k, \nabla_k)$$ line bundles are asympt. very ample if curvature $$\begin{cases} iF_k(v, Jv) > c_k |v|^2, & c_k \to +\infty \\ F_k^{(0,2)} = O(1) \end{cases}$$ $\omega_k = iF_k$ is symplectic, J is ω_k -tame. Example: $c_1(L_k) = k[\omega]$ and J is ω -compatible. Asympt. holomorphic sections of L_k : $$\begin{cases} |s_k|_{C^r,g_k} = O(1) & \text{(rescaling : } g_k = c_k g) \\ |\bar{\partial} s_k|_{C^r,g_k} = O(c_k^{-1/2}) \end{cases}$$ curvature $\to +\infty \Rightarrow look into X$ at small scale \Rightarrow non-integrability $\rightarrow 0$. #### Estimated transversality of jets Asympt. holomorphic sections $s_{k,0}, \ldots, s_{k,m} \in \Gamma(L_k)$ \Rightarrow approx. holomorphic maps $f_k : X \to \mathbb{CP}^m$ Need estimated transversality for the jets of these maps. $E_k = \mathbb{C}^{m+1} \otimes L_k$ asympt. very ample vector bundles, holom. jet bundles $\mathcal{J}^r E_k = \bigoplus_{j=0}^r (T^* X^{(1,0)})_{\text{sym}}^{\otimes j} \otimes E_k$. S_k = asympt. holomorphic stratifications of $\mathcal{J}^r E_k$: finite Whitney stratifications, transverse to the fibers; all strata are asympt. holomorphic submanifolds, with bounded curvature away from lower-dimensional strata. The jet $j^r s_k$ is η -transverse to \mathcal{S}_k if $\operatorname{dist}(j^r s_k(x), S_{k,a}) < \eta \Rightarrow$ the graph of $j^r s_k$ is transverse at x to $TS_{k,a}$, with minimum angle $> \eta$. #### Theorem 1 S_k asympt. holomorphic stratifications of $\mathcal{J}^r E_k$; $\delta > 0$; s_k asympt. holomorphic sections of E_k \Rightarrow for large enough k, \exists asympt. holomorphic sections σ_k of E_k s.t. - (1) $|\sigma_k s_k|_{C^{r+1}, q_k} < \delta$; - (2) $j^r \sigma_k$ is $\eta_{(\delta)}$ -transverse to \mathcal{S}_k . #### Estimated transversality of jets #### Ingredients of proof: - ◆ transversality is an open property ⇒ transv. to all strata by successive perturbations - start with lowest dim. strata; S_k are Whitney \Rightarrow only work away from lower-dim. strata - very localized asympt. holomorphic sections of L_k in coords.: $s_{k,x,I}(z) = z_1^{i_1} \dots z_n^{i_n} \exp(-\frac{1}{4}c_k|z|^2)$ \Rightarrow local trivializations of $\mathcal{J}^r E_k$ - local transversality result for functions $\mathbb{C}^n \to \mathbb{C}^p$ (Donaldson) - \Rightarrow a localized small perturbation of s_k yields estimated transversality to $S_{k,a}$ over a small ball - globalization argument ⇒ using openness, combine local perturbations to obtain transversality everywhere Theorem 1 also holds for families indexed by $t \in [0, 1]$ \Rightarrow objects are canonical up to isotopy (and even independent of the chosen J as long as L_k remain asympt. very ample) # Boardman stratifications of holomorphic jet spaces Boardman stratification of jets of holomorphic maps $\mathbb{C}^n \to \mathbb{C}^m$: $f:\mathbb{C}^n\to\mathbb{C}^m$ holomorphic \Rightarrow singular loci $$\Sigma_i(f) = \{x, \dim \operatorname{Ker} df(x) = i\}$$ $$\Sigma_{i_1,\dots,i_r}(f) = \Sigma_{i_r}(f_{|\Sigma_{i_1,\dots,i_{r-1}}(f)})$$ \Rightarrow stratification of $\mathcal{J}^r(\mathbb{C}^n,\mathbb{C}^m)$ by Σ_I . Sections $$s_k$$ of $E_k = \mathbb{C}^{m+1} \otimes L_k$ $\Rightarrow f_k = \mathbb{P}s_k : X - s_k^{-1}(0) \to \mathbb{CP}^m$ $j^r s_k = (s_k, \partial s_k, \partial \partial s_k, \dots)$; use local approx. holom. coordinates to identify $\mathcal{J}^r(X, \mathbb{CP}^m)$ with $\mathcal{J}^r(\mathbb{C}^n, \mathbb{C}^m)$ \Rightarrow Boardman stratification of $\mathcal{J}^r E_k$: $$- S_0 = \{j^r s(x), \ s(x) = 0\}$$ $$-S_I = \{j^r s(x), \ s(x) \neq 0, \ j^r \mathbb{P} s(x) \in \Sigma_I\}$$ These stratifications are asympt. holomorphic \Rightarrow by Theorem 1, for large k we get $s_k \in \Gamma(E_k)$ s.t. $j^r s_k$ uniformly transverse to Boardman stratifications. #### Generic projective maps s_k asympt. holomorphic sections of $\mathbb{C}^{m+1} \otimes L_k$, $j^r s_k$ uniformly transverse to Boardman stratifications: • the base loci $Z_k = s_k^{-1}(0)$ are smooth symplectic codim. 2m + 2 submanifolds. Local model: $f_k(z_1, ..., z_n) = (z_1 : z_2 : ... : z_{m+1})$ - the holomorphic r-jets of $f_k = \mathbb{P}s_k$ behave similarly to those of generic holomorphic maps between complex manifolds - singular loci $\Sigma_I(f_k)$ = stratified symplectic submanifolds of $X Z_k$, of the expected codimension Away from singular loci, estimated transversality + asympt. holomorphicity $\Rightarrow \bar{\partial} f_k \ll \partial f_k \Rightarrow$ holomorphic local models for f_k Near $\Sigma_I(f_k)$, need to ensure $\bar{\partial} f_k \ll \partial f_k \Rightarrow$ obtain some control over $\bar{\partial} f_k$. Idea: the antiholomorphic part of the jet of f_k should vanish in the normal directions to $\Sigma_I(f_k)$. #### Generic projective maps Suitable perturbation to kill the antiholomorphic jet of f_k along normal directions to singular loci \Rightarrow obtain approx. holomorphic projective maps, topologically conjugate near every point of X to generic holomorphic maps between complex manifolds (in local approx. holomorphic coordinates). - m = 1: symplectic Lefschetz pencils (Donaldson) - m = 2: maps to \mathbb{CP}^2 (D. A.) - $m \ge 2n$: projective immersions/embeddings (Muñoz-Presas-Sols) - general case: in progress #### Symplectic Lefschetz pencils $(s_0, s_1) \in \Gamma(\mathbb{C}^2 \otimes L_k)$ suitably chosen \Rightarrow symplectic Lefschetz pencil: $$\Sigma_{\alpha} = \{x \in X, \ s_0 + \alpha s_1 = 0\} \ (\alpha \in \mathbb{CP}^1)$$ symplectic hypersurfaces, smooth except for finitely many singular points. Base locus $$Z = \{s_0 = s_1 = 0\}$$ (codim. 4). Projective map $f = (s_0: s_1): X - Z \to \mathbb{CP}^1:$ local model $f(z) = z_1^2 + \cdots + z_n^2$ near critical points. Blow up $Z \Rightarrow$ Lefschetz fibration $\hat{X} \to \mathbb{CP}^1$ Monodromy = $\theta : \pi_1(\mathbb{C} - \{ pts \}) \to \text{Map}^{\omega}(\Sigma^{2n-2}, Z)$ $\text{Map}^{\omega}(\Sigma, Z) := \pi_0(\{ \phi \in \text{Symp}(\Sigma, \omega), \phi_{|U(Z)} = \text{Id} \})$ $\Rightarrow \text{symplectic invariants.}$ ## Symplectic maps to \mathbb{CP}^2 $(s_0, s_1, s_2) \in \Gamma(\mathbb{C}^3 \otimes L_k)$ suitably chosen $\Rightarrow f = (s_0 : s_1 : s_2) : X - Z \to \mathbb{CP}^2$. Fibers = codimension 4 symplectic submanifolds, intersecting at the base locus Z (codim. 6), singular along a smooth symplectic curve $R \subset X$. Local singular models near R: - 1. $(z_1, \ldots, z_n) \mapsto (z_1^2 + \cdots + z_{n-1}^2, z_n)$ points where R is transverse to the fibers of f - 2. $(z_1, \ldots, z_n) \mapsto (z_1^3 z_1 z_n + z_2^2 + \cdots + z_{n-1}^2, z_n)$ cusp points of D = f(R) The critical curve D = f(R) is symplectic, with nodes (both orientations) and cusp singularities. Fiber above a smooth point of D = obtained by collapsing a vanishing cycle (Lagrangian S^{n-2}) in the generic fiber Σ^{2n-4} . Monodromy around D: $$\bar{\theta}: \pi_1(\mathbb{C}^2 - D) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, Z)$$ $\bar{\theta}$ (geometric generator) = generalized Dehn twist. Up to cancellation of nodes in D, for $k \gg 0$ the topology of f_k is a symplectic invariant. ### Monodromy and braid groups Perturbation $\Rightarrow D = \text{singular branched cover of } \mathbb{CP}^1$. Monodromy = $\rho : \pi_1(\mathbb{C} - \{ pts \}) \to B_d$ (braid group) Monodromy around each crit. point = $(half\text{-twist})^{\delta}$, $\delta \in \{-2, 1, 2, 3\}$: - $\bullet \quad \delta = 1$ - \bullet $\delta = 2$ - $\bullet \quad \searrow \quad \delta = 3$ - $\bullet \quad \mathbf{\times} \quad \delta = -2$ (Moishezon-Teicher, Auroux-Katzarkov) #### The higher dimensional case Monodromies of $f: X - Z \to \mathbb{CP}^2$: - $\rho : \pi_1(\mathbb{C} \{ \text{pts} \}) \to B_d \text{ (describes } D)$ - $\bar{\theta}: \pi_1(\mathbb{C}^2 D) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, Z)$ (describes f) Restricting to the hypersurface $W^{2n-2} = s_2^{-1}(0)$, $f_{|W} = (s_0 : s_1) : W - Z \to \mathbb{CP}^1$ is a symplectic Lefschetz pencil, monodromy $$\theta = \bar{\theta} \circ i_* : \pi_1(\mathbb{C} - \{q_1, \dots, q_d\}) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, Z)$$ The monodromy invariants (ρ, θ) determine the manifold X up to symplectomorphism. #### **Dimensional induction** (X^{2n}, ω) symplectic, $s_0, \ldots, s_n \in \Gamma(L_k)$ well-chosen. - $\Sigma_r = \{s_{r+1} = \cdots = s_n = 0\}$ smooth symplectic submanifold, dim $\Sigma_r = 2r$, $\Sigma_n = X$. - s_{r-1} and s_r define a SLP on Σ_r , generic fiber Σ_{r-1} , base locus Σ_{r-2} . Monodromy: $$\theta_r: \pi_1(\mathbb{C} - \{pts\}) \to \mathrm{Map}^{\omega}(\Sigma_{r-1}, \Sigma_{r-2})$$ • $(s_{r-2}: s_{r-1}: s_r): \Sigma_r - \Sigma_{r-3} \to \mathbb{CP}^2$, singular locus $D_r \subset \mathbb{CP}^2$, deg $D_r = d_{r-1}$. Monodromy: $$\rho_r: \pi_1(\mathbb{C} - \{pts\}) \to B_{d_{r-1}}$$ and θ_{r-1} • ρ_r and θ_{r-1} (description of Σ_r by a map to \mathbb{CP}^2) determine θ_r (description of Σ_r by a SLP) explicitly. #### Symplectic invariants characterizing X: $$(\theta_r, \rho_{r+1}, \rho_{r+2}, \dots, \rho_n), \forall 1 \leq r \leq n.$$ - r = n : SLP - r = 2 : n 2 braid factorizations + word in Map_{q,N} - r = 1 : n 1 braid factorizations + word in S_N .