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Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form w
such that dw =0 and w A - -+ A w is a volume form.

R* wy =" dx; A dy;.

(Darboux: every symplectic manifold is locally ~ (R*", wy),
i.e. there are no local invariants).

Riemann surfaces (X, voly) are symplectic.
Every Kahler manifold is symplectic.
(includes all complex projective manifolds)

but the symplectic category is much larger.
(Gompf 1994: V@G finitely presented group, (X *, w) compact
symplectic such that m1(X) = G).

Symplectic manifolds are not always complex, but they are
almost-complex, i.e. there exists J € End(TX) such that

At any given point (X, w, J) looks like (C",wyg, %), but J is
not integrable (V.J # 0; 9* # 0). So there are no holomorphic
functions (in particular no holomorphic local coordinates).



Symplectic topology

Typical problems:
— Which smooth manifolds admit symplectic structures ?
— Classity symplectic structures on a given smooth manifold.

(Moser: if [w] € H*(X,R) is fixed then all small
).
Why we care:

— Physics (classical mechanics; string theory; ...)
— Next step after understanding complex manifolds.

Some facts from complex geometry extend to symplectic
manifolds; most don't.

A lot is known if Core ingredient: structure

of Seiberg-Witten / Gromov-Witten invariants of symplectic
4-manifolds (Taubes).

For almost nothing is known. E.g., no known

non-trivial obstruction to the symplecticity of compact 6-
manifolds (except Jw] € H*(X,R) s.t. [w]™ £ 0).



Approximately holomorphic geometry

Idea:
Since we have almost-complex structures, even though there
are no holomorphic sections and linear systems, we can work

similarly with approximately holomorphic objects.
(Donaldson, ~1995)

Setup:  (X*", w) symplectic, compact
o 5-|w] € H*(X,Z) (not restrictive)
o J compatible with w ; ¢(.,.) =w(.,J.)
o L line bundle such that ¢;(L) = 3= [w]

« VY with curvature —iw; Vi =0F 4 0
Ot s(v) = 3(VEs(v) +iVEs(Jv)).

If X Kahler, then L is a holomorphic line bundle, i.e.
L®* has many holomorphic sections for k large enough.

= projective embeddings X < CP" (Kodaira).
= smooth hypersurfaces (Bertini).

= linear systems, projective maps.



Approximately holomorphic sections

X symplectic: J is not integrable = no holomorphic sections.
However, local approximately holomorphic model:

(X, z), w, J «—  (C"0), wy, (1 +...)
L®k, Vv — @, d + %Z(Z’jdfj — Zde]‘).

= sial2) = exp(—Lhl2P) i
j{ approx. holomorphic !

X

A sequence of sections s € ['(L®*) is approx. holomorphic
if sup |0s,| < LY sup |0s,| (& higher order derivatives).

Goal: find approx. holom. sections with “generic” behavior.
Theorem 1. (Donaldson, 1996) If k > 0, then L®*

admits approx. holomorphic sections s, whose zero sets
Wi are smooth symplectic hypersurfaces.

Make up for loss of holomorphicity by achieving estimated
transversality: require |dsg(z)| > sup |0sy| along s (0).
(uniform lower bound instead of just dsi(x) # 0)

Also consider linear systems of > 2 sections:

E.g.. (s, s1) well-chosen approx. hol. sections of L®* (k > 0)
= symplectic Lefschetz pencils (Donaldson, 1999)
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Branched covers of CP?

Theorem 2. (A., 2000) For k > 0, three suitable ap-
proz. hol. sections of L®* define a map X — CP? with
generie local models, canonical up to isotopy.

(X*,w) symplectic, s9, 51,55 € I'(L#*) well-chosen
:>f:(80181152):X—>CP2,

Local models near branch curve B C X :

— branched cover : (z,y) — (22, y). /j()/
R: x=0 f(R): X =0

X2 5 CP?: (Zl; . .,Z,,) — (Zf + o Zﬁp/’«’n)

— CUSp - (33,3]) = (:C3 o ZE'y,y> Q
R: y=32> f(R): 27TX* =4Y"

XZH 7 CPQZ (Zla O ZN) H (31)) — Z1%p T ZE) T 'Z;Zz—'lv Z!/)

R smooth connected symplectic curve in X.
D = f(R) symplectic, immersed except at the cusps.

Generic singularities :
complex cusps; nodes (both orientations)

- XX
Theorem 2 = up to cancellation of nodes, the topology of D
is a syviplectic invariant (if k large).
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Topological invariants

Topological data for a branched cover of CP?:

D c CP?
(up to isotopy and node cancellations).

07 (CP*— D) — Sy (N =degf)
(surjective, maps 7; to transpositions).

D and ¢ determine (X, w) up to symplectomorphism.

When dim X > 4, main difference: 6 takes values in the
mapping class group of the generic fiber.
This group is complicated; however there is a
procedure = given (X", w) and k > 0 we get

1) (n — 1) plane curves D,,, D,,_1, ..., Dy C CP*.
2) (92 . 7T1<(CIP)2 — DQ) — SN.

and these data determine (X, w) up to symplectomorphism.

= In principle it is enough to understand plane curves !
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The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)

Perturbation = D = singular branched cover of CP*.

CP? — {c0}
Vi

deg D =d

lﬂ:(:coleza:g)lﬁ(xo:xl)

Monodromy = (braid group)

= D is described by a “braid group factorization”
(involving cusps, nodes, tangencies).

The braid factorization characterizes D completely.

Problem: once computed, cannot be compared.

= more manageable (incomplete) invariant 7

Moishezon-Teicher: 7 (CP? — D) to study complex surfaces.

m1(CPP*— D) is generated by “geometric generators” (;)1<i<d ;
relations given by the braid factorization.

But: in the symplectic case, affected by node cancellations.
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Stabilized fundamental groups

(Auroux-Donaldson-Katzarkov-Yotov: math.GT/0203183)

deg D = d

L ~ C c CP* generic line, i : L — {p1,...,ps} — CP*— D
= i, Fy=(7,...,7) — m(CP? — D) surjective.

Geometric generators: I' = {conjugates of 4,71, ..., 0«4}
0 : m(CP? — D) — Sy maps clements of I' to transpositions.
6 . m(CP? — D) — Zg4 linking number (5(7;) = 1).

for each special point, two elements of I" s.t.

e tangency: v =" 0(v) and 6(~') identical.
e node: vy =~ 0(v) and 6(~") disjoint.
® cusp: 'y =99y 0(v) and 6(+) adjacent.

K =normal subgroup {(|v,~'], 7,7 € T, 8(v), 0(7) disjoint).
Add a pair of nodes < quotient by an element of K.

Theorem 3. For k > 0, Gx(X,w) = m(CP? — D;)/K,
and GY(X,w) = Ker (6, 6)/ K. are symplectic invariants.



Stabilized fundamental groups

Fact: 1—>G2—>Gk(M>)SNXZd—>ZQ—>1.

(N = deg fi, d = deg Dy)

Theorem 4. If m1(X) = 1 then we have a natural surjec-
tion Qbk: - Ab G2 — <Z2/Ak>N_1.

Ay ={(L®% . C,Kx -C), C € Hy(X,Z)}.

e CP?, CP' x CP' (Moishezon)
e some rational and K3 complete intersections (Robb)
e Hirzebruch surfaces, double covers of CP* x CP' (ADKY)

= Conjectures: for k£ > 0,

1) X alg. surface = K, = {1} and G}, = m;(CP* — D).
2) m(X) =1 = ¢y is an isomorphism.
3) m(X) =1=[GY, GY] = quotient of Zy X Zos.

Still looking for how to extract useful invariants from braid
factorization...



Non-isotopic singular plane curves
(Auroux-Donaldson-Katzarkov: math.GT/0206005)

Isotopy phenomena: (following Gromov, ... )

e Siebert-Tian (2002): every smooth symplectic curve of de-
orec < 17 in CP? is isotopic to a complex curve. Also in
PL-bundles over P! for connected curves s.t. [C] - [F] < 7.

e Barraud (2000), Shevchishin (2002): isotopy for certain sim-
ple singular configurations in CP?.

Non-isotopy phenomena:

e Fintushel-Stern (1999), Smith (2001): infinitely many non-
isotopic smooth connected symplectic curves in certain 4-
manifolds (multiples of classes of square zero).

Use on parallel copies; distinguish
using topology of branched covers (SW invariants, ... )

e Moishezon (1992): infinitely many non-isotopic singular
symplectic curves in CP* (fixed number of cusp and node
singularities).

Use braid monodromy and (hard!)

= elementary interpretation of Moishezon 7
It is also a braiding construction !
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Non-isotopic singular plane curves

D D
Given f : X — Y symplectic covering with branch curve D.
Braiding D / A=
Luttinger surgery of X / T C f~1(A).

(i.e. take out a neighborhood of T" and glue it back via a sym-
plectomorphism wrapping the meridian around the torus).

Moishezon examples: Dy = 3p(p — 1) smooth cubics in
a pencil (p > 2), remove balls around 9 intersection points,
insert branch curve of deg. p polynomial map CP? — CP? in
cach location. D; = twist j times in a well-chosen manner.

Before twisting: 71 (CP? — Dy) is infinite.
After twisting: 71(CP* — D;) finite, of different orders.

Before twisting: ¢;1(Kx,) = A|wx,)-
After twisting: ¢1(Kx;) = Mwx,| +pj [T)"7  (n#0).
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