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CHAPITRE I

Introduction

1. Introduction

Une approche de la topologie symplectique qui s’est révélée extrêmement fruc-
tueuse au fil des années a pour point de départ l’observation suivante : toute variété
symplectique (X,ω) peut être munie d’une structure presque-complexe compatible
avec la structure symplectique, c’est-à-dire un endomorphisme J du fibré tangent
TX, vérifiant J2 = −1, et tel que la forme bilinéaire g(x, y) = ω(x, Jy) définit une
métrique riemannienne sur X (voir par exemple [McS1], p. 116).

L’étude des variétés symplectiques se présente alors comme une généralisation
naturelle de la géométrie kählérienne : en effet la variété X est kählérienne dès lors
que la structure presque-complexe J est intégrable, c’est-à-dire permet de définir
localement des coordonnées complexes sur X. Les variétés kählériennes fournissent
un grand nombre d’exemples de variétés symplectiques, puisqu’elles englobent entre
autres toutes les variétés algébriques projectives complexes. Toutefois, de nom-
breuses variétés symplectiques n’admettant pas de structure kählérienne ont été
construites, notamment par Thurston [Th] et plus récemment par Gompf [Go].

La donnée d’une structure presque-complexe J sur X conduit naturellement à
étudier les sous-variétés de X dont l’espace tangent est en tout point J-invariant,
c’est-à-dire un sous-espace complexe de l’espace tangent àX. Pour un choix générique
de la structure presque-complexe compatible avec ω, de telles sous-variétés n’existent
qu’en dimension complexe 1 : ce sont les célèbres courbes pseudo-holomorphes, intro-
duites par Gromov [Gro1] et dont la théorie a connu de constants développements
(voir par exemple [McS2]).

Un autre exemple frappant de l’analogie entre variétés symplectiques compactes
et variétés kählériennes compactes est donné par les invariants de Seiberg-Witten
(voir par exemple [Mor]), dont l’interprétation en termes de courbes pseudo-holo-
morphes récemment obtenue par Taubes ([T1], [T2] et suivants) pour les variétés
symplectiques présente des similarités remarquables avec l’interprétation en termes
de courbes complexes donnée par Witten [W] pour les variétés kählériennes.

Néanmoins, certaines constructions de géométrie algébrique complexe semblaient
jusqu’à récemment ne pas pouvoir être transposées dans un contexte symplectique :
ainsi, le lieu d’annulation d’une section holomorphe générique d’un fibré très ample
sur une variété projective complexe définit une sous-variété complexe, tandis que la
construction analogue ne fonctionne pas en géométrie presque complexe.

L’idée introduite par Donaldson [D1] consiste à autoriser de petites variations de
la structure presque-complexe : ainsi, une structure presque-complexe J compatible
avec ω étant fixée, il s’agit de construire non pas des sous-variétés J-holomorphes
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4 I. INTRODUCTION

(qui n’existent en général pas au-delà de la dimension 1), mais plutôt des sous-
variétés approximativement J-holomorphes. De telles sous-variétés sont obtenues
comme lieux d’annulation de sections approximativement holomorphes de fibrés
convenablement choisis : l’observation fondamentale de Donaldson est que, de même
qu’un fibré holomorphe suffisamment positif sur une variété projective admet un
grand nombre de sections holomorphes, un fibré en droites suffisamment positif sur
une variété symplectique compacte admet de nombreuses sections approximative-
ment holomorphes. Toutefois, contrairement au cas projectif où un argument facile
de transversalité permet d’obtenir immédiatement des hypersurfaces complexes, un
raisonnement assez long est nécessaire pour prouver l’existence d’une section dont
les propriétés de transversalité à la section nulle garantissent que le lieu d’annulation
est une sous-variété lisse et approximativement J-holomorphe.

Il est aisé de vérifier qu’une sous-variété approximativement J-holomorpheW ⊂
X est symplectique, c’est-à-dire que la restriction de ω munit W d’une structure
symplectique. En outre, il existe une structure presque-complexe J ′ compatible
avec ω, proche de J (mais dépendant de W ), telle que W soit une sous-variété
J ′-holomorphe de X. Un intérêt majeur du résultat de Donaldson est donc de
fournir le premier procédé général de construction d’hypersurfaces symplectiques
(codimension réelle 2) dans une variété symplectique compacte arbitraire [D1].

Dans [A1] (voir aussi §2 et chapitre II), ce résultat a été étendu au cas de fibrés
de rang supérieur : la construction de sections approximativement holomorphes
vérifiant des propriétés convenables de transversalité permet alors d’obtenir des
sous-variétés symplectiques (approximativement J-holomorphes) de codimension
quelconque, dont on détermine mieux le type topologique que par simple itération
du résultat de [D1]. Il a de plus été établi que, en dépit de la grande flexibilité de
la construction de Donaldson, les sous-variétés que l’on est susceptible d’obtenir à
partir de sections approximativement holomorphes d’un fibré suffisamment positif
donné sont uniques à isotopie symplectique près [A1] (cf. §2 et chapitre II) ; en
outre, ce résultat reste vrai même si l’on fait varier la structure presque-complexe.
Cela signifie que les sous-variétés symplectiques construites à partir de fibrés suf-
fisamment positifs peuvent être utilisées pour définir des invariants symplectiques
de la variété considérée : ainsi des invariants topologiques définis pour des variétés
de petite dimension (par exemple ceux de Seiberg-Witten en dimension 4) peuvent
être utilisés pour caractériser des variétés symplectiques de dimension supérieure.

D’autres résultats classiques de géométrie projective complexe peuvent être
transposés à la géométrie symplectique de façon similaire. Ainsi, Donaldson a été le
premier à montrer que deux sections approximativement holomorphes convenable-
ment choisies d’un fibré en droites suffisamment positif déterminent une structure
de pinceau de Lefschetz symplectique sur une variété symplectique compacte [D2].
Une telle structure est l’analogue symplectique de la notion classique de pinceau
de Lefschetz algébrique : la variété considérée est remplie par une famille d’hyper-
surfaces symplectiques indexées par CP1, s’intersectant le long d’une sous-variété
symplectique lisse de codimension (réelle) 4 (les “points base”), toutes les hyper-
surfaces du pinceau étant lisses excepté un nombre fini d’entre elles dont les points
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singuliers sont isolés et relativement simples (des points doubles à croisement nor-
mal dans le cas de la dimension 4) ; après éclatement le long des points base, on
obtient une fibration de Lefschetz symplectique au-dessus de CP1. Outre [D2], on
pourra se référer au §6.2 du chapitre III où est esquissée une preuve du résultat
utilisant les arguments de [A1] et [A2], ainsi qu’au texte de Sikorav [Si] ; enfin, une
étude poussée des pinceaux de Lefschetz symplectiques en dimension 4 se trouve
dans [BK].

Dans le même esprit, il a été établi dans [A2] (voir aussi §3 et chapitre III) que
toute variété symplectique compacte X de dimension 4 peut être vue comme un
revêtement ramifié (singulier) de CP2 : le revêtement est déterminé par trois sections
approximativement holomorphes soigneusement choisies d’un fibré en droites très
positif sur X. De plus, le choix d’un fibré en droites suffisamment positif détermine
canoniquement une classe d’isotopie de revêtements ramifiés (singuliers) X → CP2,
indépendamment de la structure presque-complexe compatible considérée [A2]. Il
semble probable que de nombreux autres résultats classiques de géométrie projective
admettent de la même façon des analogues symplectiques.

Le reste de ce chapitre a pour but de donner un aperçu des principaux résultats
obtenus au cours de la réalisation de ce travail, et de les illustrer par divers exemples.
Les énoncés décrits ci-dessous sont formulés de façon plus précise et démontrés dans
les chapitres II et III ([A1] et [A2]). On pourra également se référer à [D1] pour
l’argument original de Donaldson, ainsi qu’à [Si] pour une synthèse des résultats de
[D1], [A1] et [D2].

2. Sous-variétés symplectiques : énoncés et exemples

Soit (X,ω) une variété symplectique compacte de dimension 2n. On fera dans
tout ce qui suit l’hypothèse que la classe de cohomologie 1

2π
[ω] ∈ H2(X,R) est

entière. Cette condition d’intégralité n’est pas une restriction très forte, car dans
tous les cas il existe des formes symplectiques ω′ arbitrairement proches de ω et
qui, après multiplication par un facteur entier, vérifient la condition requise. Une
structure presque-complexe J compatible avec ω et la métrique riemannienne cor-
respondante g sont également fixées.

Soit L le fibré en droites complexes sur X dont la classe de Chern est c1(L) =
1
2π
[ω], muni d’une métrique hermitienne et d’une connexion hermitienne ∇L dont

la 2-forme de courbure est égale à −iω (l’existence d’une telle connexion est facile
à établir : la courbure d’une connexion hermitienne quelconque ∇ sur L diffère de
−iω par une 2-forme exacte qui peut se mettre sous la forme i da avec a ∈ Ω1(X,R) ;
on peut alors choisir ∇L = ∇ + i a). L’observation fondamentale est que, pour des
valeurs suffisamment grandes du paramètre entier k, le fibré en droites Lk admet de
nombreuses sections approximativement holomorphes, qui déterminent un plonge-
ment approximativement holomorphe de X dans un espace projectif : il s’agit d’un
analogue symplectique de la construction classique de Kodaira (voir par exemple
[GH], §1.4). L’intuition dicte alors qu’un hyperplan convenablement choisi doit, par
intersection avec X, déterminer une sous-variété symplectique approximativement
J-holomorphe de X. La formulation rigoureuse de cette construction (voir [D1])
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nécessite l’introduction des notions d’holomorphie asymptotique et de transversalité
uniforme à 0 d’une famille de sections.

Soient (Ek)kÀ0 des fibrés vectoriels complexes sur X, tous munis d’une métrique
hermitienne et d’une connexion hermitienne. La structure presque-complexe J sur
X et la connexion sur Ek déterminent des opérateurs ∂ et ∂̄ sur Ek.

Les fibrés Ek que l’on utilisera dans la suite sont définis à partir des fibrés en
droites Lk : par exemple, on s’intéressera particulièrement au cas de Ek = E ⊗ Lk,
où E est un fibré vectoriel hermitien fixé muni d’une connexion hermitienne ∇E.
Les structures et connexions hermitiennes dont on munit Ek naturellement sont
alors induites par celles de E et L. En particulier, la connexion hermitienne induite
par ∇L sur Lk a pour courbure −ikω ; il s’ensuit que les variations des sections des
fibrés Ek que l’on considérera tendent naturellement à se produire à des échelles de
l’ordre de k−1/2 (à cause de l’identité liant leurs dérivées secondes à la courbure).
Il est donc utile de remplacer la métrique g sur X par la métrique renormalisée
gk = k.g : le diamètre de X est alors multiplié par k1/2, et les dérivées d’ordre p des
sections sont divisées par kp/2.

Remarque : contrairement à la convention adoptée ici ainsi qu’au chapitre III
et dans l’ensemble de la littérature, dans le chapitre II ci-dessous ([A1]) la métrique
gk n’est pas utilisée, et toutes les estimées sont données pour la métrique g, ce qui
introduit des facteurs k1/2 supplémentaires dans les définitions. Par ailleurs on peut
indifféremment travailler avec des estimées de type Cr ([D1], [A1]) ou C∞ ([A2]).

Définition 1. Des sections (sk)kÀ0 de fibrés vectoriels complexes Ek sur X sont
dites asymptotiquement holomorphes si, pour tout p ∈ N, les dérivées covariantes
∇psk et les quantités k1/2∇p∂̄sk sont uniformément bornées (pour la métrique gk)
par des constantes indépendantes de k, c’est-à-dire si

∀p ∈ N, |sk|Cp,gk
= O(1) et |∂̄sk|Cp,gk

= O(k−1/2).

Définition 2. Des sections (sk)kÀ0 de Ek sur X sont dites uniformément trans-
verses à 0 s’il existe une constante η > 0 telle que, pour tout k et en tout point x ∈ X
tel que |sk(x)| < η, la dérivée covariante ∇sk(x) : TxX → (Ek)x est surjective et
“plus grande que η” (c’est-à-dire admet un inverse à droite de norme inférieure à
η−1).

On vérifie aisément que, si des sections (sk)kÀ0 de Ek sont simultanément asymp-
totiquement holomorphes et uniformément transverses à 0, alors pour k suffisam-
ment grand le lieu d’annulation Wk = s−1k (0) est une sous-variété symplectique
lisse de X. Les sous-variétés Wk sont de plus asymptotiquement J-holomorphes, en
ce sens qu’en tout point de Wk le sous-espace J(TWk) est à distance O(k−1/2) de
TWk. Les résultats principaux du chapitre II peuvent alors être formulés de la façon
suivante :

Théorème 1 ([A1]). Soit E un fibré vectoriel complexe quelconque sur X : pour
k suffisamment grand, les fibrés E ⊗ Lk admettent des sections asymptotiquement
holomorphes et uniformément transverses à 0, dont les lieux d’annulation sont des
sous-variétés symplectiques lisses de X.
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Ce théorème (chapitre II, Corollaire 1) étend le résultat principal obtenu par
Donaldson dans [D1], qui correspond au cas où E est le fibré en droites trivial. Le
résultat d’unicité suivant (chapitre II, Corollaire 2) est également établi :

Théorème 2 ([A1]). Les sous-variétés symplectiques que l’on peut construire
à partir de sections asymptotiquement holomorphes et uniformément transverses à
0 de E ⊗ Lk sont, pour toute valeur suffisamment grande de k, uniques à isotopie
symplectique près.

En outre, ce résultat d’unicité demeure vrai si l’on considère des sous-variétés
obtenues pour différentes structures presque-complexes compatibles avec ω. Pour k
suffisamment grand, le type topologique des sous-variétés symplectiques construites
est donc un invariant symplectique de (X,ω).

Exemple. Dans le tore T 4 = R4/Z4 muni de la forme symplectique standard
ω = 4π(dx1 ∧ dx2 + dx3 ∧ dx4), différentes topologies sont envisageables pour des
sous-variétés symplectiques représentant la classe d’homologie duale de k

2π
[ω] pour

la dualité de Poincaré. La configuration la plus simple, qui correspond à ce que
l’on obtient naturellement pour k suffisamment grand à partir de sections asymp-
totiquement holomorphes et uniformément transverses à 0 de Lk, est une surface
de Riemann connexe de genre 4k2 + 1 : une telle sous-variété peut par exemple
être obtenue par désingularisation (à l’aide de sommes connexes) de la sous-variété
singulière (Fk × T 2) ∪ (T 2 × Fk) où Fk ⊂ T 2 est un ensemble fini constitué de 2k
points de T 2.

Toutefois, d’autres types de sous-variétés symplectiques permettent de réaliser
la même classe d’homologie : par exemple des surfaces constituées de deux compo-
santes disjointes chacune de genre 2k2+1. Il est aisé de vérifier sans même invoquer
le Théorème 2 que de telles sous-variétés ne peuvent être obtenues par les méthodes
décrites ici (Proposition 2 du chapitre II). La construction de ces sous-variétés non
connexes se fonde sur l’existence d’une décomposition 1

2π
ω = ξ + ζ où les 2-formes

ξ et ζ sont telles que ω ∧ ξ > 0, ω ∧ ζ > 0 et ξ ∧ ζ = 0 : les classes d’homologie
duales de [kξ] et [kζ] peuvent alors être représentées par des courbes symplectiques
disjointes, chaque composante étant de genre 2k2 + 1 et obtenue comme ci-dessus
par désingularisation de familles de 2-tores plats de T 4.

Cet exemple illustre la non-trivialité du Théorème 2 : contrairement à ce qui
se passe en géométrie complexe où toutes les hypersurfaces projectives lisses d’une
classe d’homologie donnée sont difféomorphes, dans le cas symplectique différents
types topologiques peuvent coexister dans une même classe d’homologie. Le résultat
d’unicité décrit ici ainsi que plusieurs autres propriétés décrites dans [D1] et [A1]
indiquent que, par de nombreux aspects, les sous-variétés approximativement holo-
morphes étudiées ici semblent avoir un comportement topologique plus proche de
la géométrie projective complexe que de la géométrie symplectique usuelle.

La détermination du type topologique des sous-variétés construites est en général
difficile, même si des invariants élémentaires tels que les nombres de Betti peuvent
être calculés explicitement (Proposition 2 et §5.2 du chapitre II). En général, cette
détermination complète n’est possible que dans quelques cas tels que ceux des sous-
variétés de dimension 2 (ce sont des surfaces de Riemann connexes dont le genre
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se calcule aisément), ou parfois lorsque la variété X est une variété algébrique ou
encore un produit de variétés symplectiques.

Exemple. On considère le cas où X6 = M4 × Σ2 est le produit cartésien de
variétés symplectiques (M,ωM ) de dimension 4 et (Σ, ωΣ) de dimension 2 vérifiant
toutes deux la condition d’intégralité requise. Par le Théorème 1, on peut construire
pour k suffisamment grand des courbes symplectiques Σk ⊂M de classe fondamen-
tale k

2π
[ωM ] (le genre de ces courbes connexes se calcule par la formule d’adjonction),

ainsi que des parties finies Fk constituées de fk = k
2π

∫

Σ
ωΣ points de Σ.

La variété X étant munie de la structure symplectique produit ω = π∗1ωM +
π∗2ωΣ, on peut alors établir (à l’aide du Théorème 2 du chapitre II) que les fibrés
Lk sur X admettent des sections asymptotiquement holomorphes et uniformément
transverses à 0 dont les lieux d’annulationWk sont arbitrairement proches des sous-
variétés singulières Vk = (Σk×Σ)∪(M×Fk). La topologie naturelle des sous-variétés
symplectiques de X de classe fondamentale duale de k

2π
[ω] décrites par le Théorème

1 correspond donc à une désingularisation (au voisinage de Σk × Fk) de la sous-
variété Vk. On peut montrer que la construction qui permet d’obtenir Wk à partir
de Σk × Σ et de M × Fk est une opération de somme connexe symplectique avec
éclatements le long de Σk × Fk : si on note Mk la variété obtenue à partir de M
par éclatement de points de Σk jusqu’à rendre trivial le fibré normal de Σk, la sous-
variété Wk s’obtient en recollant à Σk × Σ un exemplaire de la variété éclatée Mk

le long de chacune des fk composantes de Σk × Fk. On se référera à [Go] pour une
description plus précise du procédé de somme connexe symplectique.

La construction de sous-variétés symplectiques de dimension 4 (canoniques à
isotopie près d’après le Théorème 2) est particulièrement intéressante, car les nom-
breux invariants de dimension 4 définis pour ces sous-variétés fournissent autant
d’invariants symplectiques de la variété ambiante. Dans le cas des invariants de
Seiberg-Witten, cette approche est toutefois décevante, car les invariants des sous-
variétés construites pour k grand semblent contenir très peu d’information : dans le
cas des variétés projectives, les sous-variétés obtenues sont des surfaces algébriques
de type général, dont les invariants de Seiberg-Witten sont peu intéressants [FM]
(ils ne décrivent que la classe de Chern c1(TX) et la présence d’éventuelles sphères
exceptionnelles), et dans le cas décrit ci-dessus du produit X6 =M4×Σ2, le calcul
partiel à l’aide de formules pour les sommes connexes telles que celle de [MST] n’est
pas plus fructueux. Toutefois, il est probable que des invariants plus fins tels que
ceux qui décrivent la topologie des structures de pinceaux de Lefschetz symplec-
tiques en dimension 4 ([D2], voir aussi [Si] et [BK]), appliqués aux sous-variétés de
dimension 4 données par le Théorème 1, permettent d’obtenir des informations plus
précises sur la topologie de la variété ambiante.

3. Revêtements ramifiés de CP2

Les théorèmes d’existence de sections asymptotiquement holomorphes et uni-
formément transverses à 0 décrits ci-dessus constituent également un premier pas
vers l’obtention de structures plus élaborées : ainsi, il est possible pour k suffisam-
ment grand de construire une section approximativement holomorphe de C2 ⊗ Lk
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(c’est-à-dire un couple de sections de Lk) dont les propriétés de transversalité
entrainent l’existence d’une structure de pinceau de Lefschetz symplectique sur
X ([D2], voir également le §6.2 du chapitre III). Dans cette partie nous nous
intéresserons plus particulièrement à la construction de trois sections approxima-
tivement holomorphes de Lk (c’est-à-dire une section de C3 ⊗ Lk) lorsque X est
de dimension 4, ce qui permet d’aboutir au résultat que toute variété symplectique
compacte de dimension 4 est un revêtement ramifié (singulier) de CP2 [A2]. Les
énoncés et définitions ci-dessous sont formulés plus précisément et démontrés dans
le chapitre III.

Il existe un lien naturel entre sections de C3⊗Lk et applications à valeurs dans
CP2 : la donnée d’une section s = (s0, s1, s2) de C3 ⊗ Lk qui ne s’annule pas sur X
permet de définir une application f(x) = [s0(x) : s1(x) : s2(x)] (en coordonnées ho-
mogènes) de X dans CP2. Lorsque k est assez grand, il est possible de construire des
sections approximativement holomorphes de C3 ⊗ Lk qui ne s’annulent pas et dont
les propriétés de généricité et de compatibilité avec la structure presque-complexe
suffisent à assurer que l’application projective correspondante est un revêtement
ramifié singulier approximativement holomorphe (la formulation précise des pro-
priétés requises étant relativement compliquée, on se référera aux Définitions 5, 6
et 7 du chapitre III).

Le terme de revêtement ramifié fait référence au fait que l’on autorise des feuillets
du revêtement à se rejoindre le long d’une sous-variété R appelée lieu de ramifi-
cation : l’exemple le plus simple est l’application (x, y) 7→ (x2, y) de C2 dans C2,
dont le lieu de ramification est C×0. En outre, le revêtement décrit ici est singulier
de par la présence de points isolés où le lieu de ramification R devient “vertical”,
c’est-à-dire que la restriction de f à R cesse d’être une immersion et l’image f(R)
présente alors un cusp : un exemple type est l’application (x, y) 7→ (x3 − xy, y)
de C2 dans C2 au voisinage de l’origine. Une description plus précise de la notion
de revêtement ramifié singulier est donnée au §1 du chapitre III. En outre, dans
le cas que l’on considère ici l’application de revêtement est approximativement
holomorphe, ce qui implique en particulier que le lieu de ramification R est une
sous-variété symplectique approximativement holomorphe de X et que son image
par f est une sous-variété symplectique singulière de CP2.

Le résultat principal de [A2] peut se formuler de la façon suivante (cf. Théorèmes
1 et 4 du chapitre III) :

Théorème 3. Pour tout k suffisamment grand, il est possible de construire des
sections de C3 ⊗ Lk qui donnent à X une structure de revêtement ramifié singu-
lier approximativement holomorphe au-dessus de CP2. En outre, pour chaque va-
leur suffisamment grande de k la topologie d’un tel revêtement est canoniquement
déterminée à isotopie près.

De même que les structures de pinceaux de Lefschetz symplectiques des variétés
symplectiques de dimension 4 permettent, par l’étude de la monodromie de la fi-
bration de Lefschetz correspondante au-dessus de CP1, de définir des invariants
symplectiques très fins ([D2], [BK]), il est possible d’exploiter le Théorème 3 pour
construire de nouveaux invariants symplectiques.
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La topologie d’un revêtement ramifié f : X → CP2 est en grande partie
déterminée par celle de l’image du lieu de ramificationD = f(R) ⊂ CP2. Dans notre
cas, D est une courbe symplectique singulière dans CP2, dont les seules singularités
sont génériquement des cusps et des points doubles (a priori, il n’est pas certain
que l’on puisse exclure les points doubles à auto-intersection négative comme c’est
le cas en géométrie projective). L’étude des invariants qui caractérisent la topologie
d’une telle sous-variété de CP2 est actuellement l’objet d’un travail en collaboration
avec L. Katzarkov, en faisant appel à des techniques introduites et développées en
géométrie complexe par Moishezon dans les années 80 ([Moi1], [Moi2], ...) et qui per-
mettent de se ramener à l’étude d’une factorisation dans un groupe de tresses. Les
perspectives offertes par de tels invariants pour la résolution de divers problèmes
ouverts importants en topologie symplectique de la dimension 4 semblent d’ores
et déjà prometteuses, même si un travail important reste à fournir avant que la
topologie des revêtements ramifiés singuliers de CP2 soit entièrement comprise.



CHAPITRE II

Asymptotically Holomorphic Families of Symplectic

Submanifolds

(paru dans Geom. Funct. Anal. 7 (1997), 971–995)

Abstract. We construct a wide range of symplectic submanifolds
in a compact symplectic manifold as zero sets of asymptotically
holomorphic sections of vector bundles obtained by tensoring an
arbitrary vector bundle by large powers of the complex line bundle
whose first Chern class is the symplectic form (assuming a suit-
able integrality condition). We also show that, asymptotically, all
sequences of submanifolds constructed from a given vector bun-
dle are isotopic. Furthermore, we prove a result analogous to the
Lefschetz hyperplane theorem for the constructed submanifolds.

1. Introduction

In a recent paper [D1], Donaldson has exhibited an elementary construction
of symplectic submanifolds of codimension 2 in a compact symplectic manifold,
where the submanifolds are seen as zero sets of asymptotically holomorphic sections
of well-chosen line bundles. In this paper, we extend this construction to higher
rank bundles as well as to one-parameter families, and obtain as a consequence an
important isotopy result.

In all the following, (X,ω) will be a compact symplectic manifold of dimension
2n, such that the cohomology class 1

2π
[ω] is integral. A compatible almost-complex

structure J and the corresponding riemannian metric g are fixed. Let L be the
complex line bundle on X whose first Chern class is c1(L) =

1
2π
[ω]. Fix a Hermitian

structure on L, and let ∇L be a Hermitian connection on L whose curvature 2-form
is equal to −iω (it is clear that such a connection always exists).

We will consider families of sections of bundles of the form E⊗Lk on X, defined
for all large values of an integer parameter k, where E is any Hermitian vector
bundle over X. The connection ∇L induces a connection of curvature −ikω on Lk,
and together with any given Hermitian connection ∇E on E this yields a Hermitian
connection on E ⊗ Lk for any k. We are interested in sections which satisfy the
following two properties :

Definition 1. A sequence of sections sk of E ⊗ Lk (for large k) is said to
be asymptotically holomorphic with respect to the given connections and almost-
complex structure if the following bounds hold :

|sk| = O(1), |∇sk| = O(k1/2), |∂̄sk| = O(1),
|∇∇sk| = O(k), |∇∂̄sk| = O(k1/2).

11
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Since X is compact, up to a change by a constant factor in the estimates, the
notion of asymptotic holomorphicity does not actually depend on the chosen Her-
mitian structures and on the chosen connection∇E. On the contrary, the connection
∇L is essentially determined by the symplectic form ω, and the positivity property
of its curvature is the fundamental ingredient that makes the construction possible.

Definition 2. A section s of a vector bundle E ⊗Lk is said to be η-transverse
to 0 if whenever |s(x)| < η, the covariant derivative ∇s(x) : TxX → (E ⊗ Lk)x
is surjective and admits a right inverse whose norm is smaller than η−1.k−1/2. A
family of sections is transverse to 0 if there exists an η > 0 such that η-transversality
to 0 holds for all large values of k.

In the case of line bundles, η-transversality to 0 simply means that the covariant
derivative of the section is larger than ηk1/2 wherever the section is smaller than
η. Also note that transversality to 0 is an open property : if s is η-transverse to 0,
then any section σ such that |s − σ| < ε and |∇s − ∇σ| < k1/2ε is automatically
(η − ε)-transverse to 0. The following holds clearly, independently of the choice of
the connections on the vector bundles :

Proposition 1. Let sk be sections of the vector bundles E ⊗ Lk which are si-
multaneously asymptotically holomorphic and transverse to 0. Then for all large
enough k, the zero sets Wk of sk are embedded symplectic submanifolds in X. Fur-
thermore, the submanifolds Wk are asymptotically J-holomorphic, i.e. J(TWk) is
within O(k−1/2) of TWk.

The result obtained by Donaldson [D1] can be expressed as follows :

Theorem 1. For all large k there exist sections of the line bundles Lk which
are transverse to 0 and asymptotically holomorphic (with respect to connections with
curvature −ikω on Lk).

Our main result is the following (the extension to almost-complex structures
that depend on the parameter t was suggested by the referee) :

Theorem 2. Let E be a complex vector bundle of rank r over X, and let a
parameter space T be either {0} or [0, 1]. Let (Jt)t∈T be a family of almost-complex
structures on X compatible with ω. Fix a constant ε > 0, and let (st,k)t∈T,k≥K be
a sequence of families of asymptotically Jt-holomorphic sections of E ⊗ Lk defined
for all large k, such that the sections st,k and their derivatives depend continuously
on t.

Then there exist constants K̃ ≥ K and η > 0 (depending only on ε, the geometry
of X and the bounds on the derivatives of st,k), and a sequence (σt,k)t∈T,k≥K̃ of

families of asymptotically Jt-holomorphic sections of E ⊗Lk defined for all k ≥ K̃,
such that

(a) the sections σt,k and their derivatives depend continuously on t,
(b) for all t ∈ T , |σt,k − st,k| < ε and |∇σt,k −∇st,k| < k1/2ε,
(c) for all t ∈ T , σt,k is η-transverse to 0.

Note that, since we allow the almost-complex structure on X to depend on t,
great care must be taken as to the choice of the metric on X used for the estimates
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on derivatives. The most reasonable choice, and the one which will be made in the
proof, is to always use the same metric, independently of t (so, there is no relation
between g, ω and Jt). However, it is clear from the statement of the theorem that,
since the spaces X and T are compact, any change in the choice of metric can be
absorbed by simply changing the constants K̃ and η, and so the result holds in all
generality.

Theorem 2 has many consequences. Among them, we mention the following
extension of Donaldson’s result to higher rank bundles :

Corollary 1. For any complex vector bundle E over X and for all large k,
there exist asymptotically holomorphic sections of E⊗Lk which are transverse to 0,
and thus whose zero sets are embedded symplectic submanifolds in X. Furthermore
given a sequence of asymptotically holomorphic sections of E ⊗ Lk and a constant
ε > 0, we can require that the transverse sections lie within ε in C0 sense (and k1/2ε
in C1 sense) of the given sections.

Therefore, homology classes that one can realize by this construction include all
classes whose Poincaré dual is of the form ( k

2π
[ω])r + c1.(

k
2π
[ω])r−1 + . . . + cr, with

c1, . . . , cr the Chern classes of any complex vector bundle and k any sufficiently
large integer.

An important result that one can obtain on the sequences of submanifolds con-
structed using Corollary 1 is the following isotopy result derived from the case where
T = [0, 1] in Theorem 2 and which had been conjectured by Donaldson in the case
of line bundles :

Corollary 2. Let E be any complex vector bundle over X, and let s0,k and s1,k
be two sequences of sections of E⊗Lk. Assume that these sections are asymptotically
holomorphic with respect to almost-complex structures J0 and J1 respectively, and
that they are ε-transverse to 0. Then for all large k the zero sets of s0,k and s1,k are
isotopic through asymptotically holomorphic symplectic submanifolds. Moreover,
this isotopy can be realized through symplectomorphisms of X.

This result follows from Theorem 2 by defining sections st,k and almost-complex
structures Jt that interpolate between (s0,k, J0) and (s1,k, J1) in the following way :
for t ∈ [0, 1

3
], let st,k = (1 − 3t)s0,k and Jt = J0 ; for t ∈ [1

3
, 2
3
], let st,k = 0 and

take Jt to be a path of compatible almost-complex structures from J0 to J1 (this
is possible since the space of compatible almost-complex structures is connected) ;
and for t ∈ [2

3
, 1], let st,k = (3t− 2)s1,k and Jt = J1. One can then apply Theorem

2 and obtain for all large k and for all t ∈ [0, 1] sections σt,k that differ from st,k
by at most ε/2 and are η-transverse to 0 for some η. Since transversality to 0 is
an open property, the submanifolds cut out by σ0,k and σ1,k are clearly isotopic to
those cut out by s0,k and s1,k. Moreover, the family σt,k gives an isotopy between
the zero sets of σ0,k and σ1,k. So the constructed submanifolds are isotopic. The
proof that this isotopy can be realized through symplectomorphisms of X will be
given in Section 4.
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As a first step in the characterization of the topology of the constructed sub-
manifolds, we also prove the following statement, extending the result obtained by
Donaldson in the case of the line bundles Lk :

Proposition 2. Let E be a vector bundle of rank r over X, and let Wk be a
sequence of symplectic submanifolds of X constructed as the zero sets of asymptot-
ically holomorphic sections sk of E ⊗ Lk which are transverse to 0, for all large k.
Then when k is sufficiently large, the inclusion i : Wk → X induces an isomorphism
on homotopy groups πp for p < n− r, and a surjection on πn−r. The same property
also holds for homology groups.

Section 2 contains the statement and proof of the local result on which the whole
construction relies. Section 3 deals with the proof of a semi-global statement, using
a globalization process to obtain results on large subsets of X from the local picture.
The proofs of Theorem 2 and Corollary 2 are then completed in Section 4. Sec-
tion 5 contains miscellaneous results on the topology and geometry of the obtained
submanifolds, including Proposition 2.

Acknowledgments. The author wishes to thank Professor Mikhael Gromov
(IHÉS) for valuable suggestions and guidance throughout the elaboration of this

paper, and Professor Jean-Pierre Bourguignon (École Polytechnique) for his sup-
port.

2. The local result

The proof of Theorem 2 relies on a local transversality result for approximatively
holomorphic functions, which we state and prove immediately.

Proposition 3. There exists an integer p depending only on the dimension
n, with the following property : let δ be a constant with 0 < δ < 1

2
, and let σ =

δ. log(δ−1)−p. Let (ft)t∈T be a family of complex-valued functions over the ball B+

of radius 11
10

in Cn, depending continuously on the parameter t ∈ T and satisfying
for all t the following bounds over B+ :

|ft| ≤ 1, |∂̄ft| ≤ σ, |∇∂̄ft| ≤ σ.

Then there exists a family of complex numbers wt ∈ C, depending continuously
on t, such that for all t ∈ T , |wt| ≤ δ, and ft −wt has a first derivative larger than
σ at any point of the interior ball B of radius 1 where its norm is smaller than σ.

Proposition 3 extends a similar result proved in detail in [D1], which corresponds
to the case where T = {0}. The proof of Proposition 3 is based on the same ideas
as Donaldson’s proof, which is in turn based on considerations from real algebraic
geometry following the method of Yomdin [Y][Gro2], with the only difference that
we must get everything to depend continuously on t. Note that this statement is
false for more general parameter spaces T than {0} and [0, 1], since for example
when T is the unit disc in C and ft(z) = t, one looks for a continuous map t 7→ wt

of the disc to itself without a fixed point, in contradiction with Brouwer’s theorem.
The idea is to deal with polynomial functions gt approximating ft, for which

a general result on the complexity of real semi-algebraic sets gives constraints on
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the near-critical levels. This part of the proof is similar to that given in [D1], so
we skip the details. To obtain polynomial functions, we approximate ft first by a
continuous family of holomorphic functions f̃t differing from ft by at most a fixed
multiple of σ in C1 sense, using that ∂̄ft is small. The polynomials gt are then
obtained by truncating the Taylor series expansion of f̃t to a given degree. It can
be shown that by this method one can obtain polynomial functions gt of degree d
less than a constant times log(σ−1), such that gt differs from ft by at most c.σ in
C1 sense, where c is a fixed constant (see [D1]). This approximation process does
not hold on the whole ball where ft is defined, which is why we needed ft to be
defined on B+ to get a result over the slightly smaller ball B (see Lemmas 27 and
28 of [D1]).

For a given complex-valued function h over B, call Yh,ε the set of all points
in B where the derivative of h has norm less than ε, and call Zh,ε the ε-tubular
neighborhood of h(Yh,ε). What we wish to construct is a path wt avoiding by at least
σ all near-critical levels of ft, i.e. consisting of values that lie outside of Zft,σ. Since
gt is within c.σ of ft, it is clear that Zft,σ is contained in Zt = Zgt,(c+1)σ. However
a general result on the complexity of real semi-algebraic sets yields constraints on
the set Ygt,(c+1)σ. The precise statement which one applies to the real polynomial
|dgt|2 is the following (Proposition 25 of [D1]) :

Lemma 1. Let F : Rm → R be a polynomial function of degree d, and let
S(θ) ⊂ Rm be the subset S(θ) = {x ∈ Rm : |x| ≤ 1, F (x) ≤ 1 + θ}. Then for
arbitrarily small θ > 0 there exist fixed constants C and ν depending only on the
dimension m such that S(0) may be decomposed into pieces S(0) = S1∪S2 · · · ∪SA,
where A ≤ Cdν, in such a way that any pair of points in the same piece Sr can be
joined by a path in S(θ) of length less than Cdν.

So, as described in [D1], given any fixed t, the set Ygt,(c+1)σ of near-critical
points of the polynomial function gt of degree d can be subdivided into at most
P (d) subsets, where P is a fixed polynomial, in such a way that two points lying in
the same subset can be joined by a path of length at most P (d) inside Ygt,2(c+1)σ. It
follows that the image by gt of Ygt,(c+1)σ is contained in the union of P (d) discs of
radius at most 2(c + 1)σP (d), so that the set Zt of values which we wish to avoid
is contained in the union Z+

t of P (d) discs of radius σQ(d), where Q = 3(c+1)P is
a fixed polynomial and d = O(log σ−1).

If one assumes δ to be larger than σQ(d)P (d)1/2, it follows immediately from
this constraint on Zt that Zt cannot fill the disc D of all complex numbers of norm
at most δ : this immediately proves the case T = {0}. However, when T = [0, 1],
we also need wt to depend continuously on t. For this purpose, we show that if δ
is large enough, D−Z+

t , when decomposed into connected components, splits into
several small components and only one large component.

Indeed, given a component C of D − Z+
t , the simplest situation is that it does

not meet the boundary of D. Then its boundary is a curve consisting of pieces of the
boundaries of the balls making up Z+

t , so its length is at most 2πP (d)Q(d)σ, and
it follows that C has diameter less than πP (d)Q(d)σ. Considering two components
C1 and C2 which meet the boundary of D at points z1 and z2, we can consider an
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arc γ joining the boundary of D to itself that separates C1 from C2 and is contained
in the boundary of Z+

t . Assuming that δ is larger than e.g. 100P (d)Q(d)σ, since
the length of γ is at most 2πP (d)Q(d)σ, it must stay close to either z1 or z2 in order
to separate them : γ must remain within a distance of at most 10P (d)Q(d)σ from
one of them. It follows that there exists i ∈ {1, 2} such that Ci is contained in the
ball of radius 10P (d)Q(d)σ centered at zi. So all components of D − Z+

t except
at most one are contained in balls of radius R(d)σ, for some fixed polynomial R.
Furthermore, the number of components of D− Z+

t is bounded by a value directly
related to the number of balls making up Z+

t , so that, increasing R if necessary, the
number of components of D − Z+

t is also bounded by R(d).
Assuming that δ is much larger than R(d)3/2σ, the area πδ2 of D is much larger

than πR(d)3σ2, so that the small components of D − Z+
t cannot fill it, and there

must be a single large component. Getting back to D − Zt, which was the set in
which we had to choose wt, it contains D−Z+

t and differs from it by at most Q(d)σ,
so that, letting U(t) be the component of D − Zt containing the large component
of D − Z+

t , it is the only large component of D − Zt. The component U(t) is
characterized by the property that it is the only component of diameter more than
2R(d)σ in D − Zt.

So the existence of a single large component U(t) in D− Zt is proved upon the
assumption that δ is large enough, namely larger than σ.Φ(d) where Φ is a given
fixed polynomial that can be expressed in terms of P , Q and R (so Φ depends only
on the dimension n). Since d is bounded by a constant times log σ−1, it is not
hard to see that there exists an integer p such that, for all 0 < δ < 1

2
, the relation

σ = δ. log(δ−1)−p implies that δ > σ.Φ(d). This is the value of p which we choose in
the statement of the proposition, thus ensuring that the above statements always
hold.

Since
⋃

t{t} × Zt is a closed subset of T ×D, the open set U(t) depends semi-
continuously on t : let U−(t, ε) be the set of all points of U(t) at distance more than
ε from Zt ∪ ∂D. We claim that, given any t and any small ε > 0, for all τ close
enough to t, U(τ) contains U−(t, ε). To see this, we first show for all τ close to t,
U−(t, ε) ∩ Zτ = ∅. Assuming that this is not the case, one can get a sequence of
points of Zτ for τ → t that belong to U−(t, ε). From this sequence one can extract
a convergent subsequence, whose limit belongs to Ū−(t, ε) and thus lies outside of
Zt, in contradiction with the fact that

⋃

t{t} × Zt is closed. So U−(t, ε) ⊂ D − Zτ

for all τ close enough to t. Making ε smaller if necessary, one may assume that
U−(t, ε) is connected, so that for τ close to t, U−(t, ε) is necessarily contained in
the large component of D − Zτ , namely U(τ).

It follows that U =
⋃

t{t} × U(t) is an open connected subset of T ×D, and is
thus path-connected. So we get a path s 7→ (t(s), w(s)) joining (0, w(0)) to (1, w(1))
inside U , for any given w(0) and w(1) in U(0) and U(1). We then only have to
make sure that s 7→ t(s) is strictly increasing in order to define wt(s) = w(s).

Getting the t component to increase strictly is in fact quite easy. Indeed, we
first get it to be weakly increasing, by considering values s1 < s2 of the parameter
such that t(s1) = t(s2) = t and simply replacing the portion of the path between s1
and s2 by a path joining w(s1) to w(s2) in the connected set U(t). Then, we slightly
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shift the path, using the fact that U is open, to get the t component to increase
slightly over the parts where it was constant. Thus we can define wt(s) = w(s) and
end the proof of Proposition 3.

3. The globalization process

3.1. Statement of the result. We will now prove a semi-global result using
Proposition 3. The globalization process we describe here is based on that used by
Donaldson in [D1], but a significantly higher amount of work is required because
we have to deal with bundles of rank larger than one. The important fact we use
is that transversality to 0 is, as expected, a local and open property.

Theorem 3. Let U be any open subset of X, and let E be a complex vector
bundle of rank r ≥ 0 over U . Let (Jt)t∈T be a family of almost-complex structures
on X compatible with ω. Fix a constant ε > 0. Let Wt,k be a family of symplectic
submanifolds in U , obtained as the zero sets of asymptotically Jt-holomorphic sec-
tions wt,k of the vector bundles E⊗Lk which are η-transverse to 0 over U for some
η > 0 and depend continuously on t ∈ T (if the rank is r = 0, then we simply define
Wt,k = U). Finally, let (σt,k) be a family of asymptotically Jt-holomorphic sections
of Lk which depend continuously on t. Define U=

k to be the set of all points of U at
distance more than 4k−1/3 from the boundary of U .

Then for some η̃ > 0 and for all large k, there exist asymptotically Jt-holomor-
phic sections σ̃t,k of Lk over U , depending continuously on t, and such that

(a) for all t ∈ T , σ̃t,k is equal to σt,k near the boundary of U ,
(b) |σ̃t,k − σt,k| < ε and |∇σ̃t,k −∇σt,k| < k1/2 ε for all t,
(c) the sections (wt,k + σ̃t,k) of (E ⊕ C)⊗ Lk are η̃-transverse to 0 over U=

k for
all t.

Basically, this result states that the construction of Theorem 2 can be carried
out, in the line bundle case, in such a way that the resulting sections are transverse
to a given family of symplectic submanifolds.

As remarked in the introduction, the choice of the metric in the statement of the
theorem is not obvious. We choose to use always the same metric g on X, rather
than trying to work directly with the metrics gt induced by ω and Jt.

3.2. Local coordinates and sections. The proof of Theorem 3 is based on
the existence of highly localized asymptotically holomorphic sections of Lk near
every point x ∈ X. First, we notice that near any point x ∈ X, we can define
local complex Darboux coordinates (zi), that is to say a symplectomorphism from
a neighborhood of x in (X,ω) to a neighborhood of 0 in Cn with the standard
symplectic form. Furthermore it is well-known that, by composing the coordinate
map with a (R-linear) symplectic transformation of Cn, one can ensure that its
differential at x induces a complex linearmap from (TxX, Jt) to Cn with its standard
complex structure.

Since the almost-complex structure Jt is not integrable, the coordinate map
cannot be made pseudo-holomorphic on a whole neighborhood of x. However, since
the manifold X and the parameter space T are compact, the Nijenhuis tensor,
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which is the obstruction to the integrability of the complex structure Jt on X,
is bounded by a fixed constant, and so are its derivatives. It follows that for a
suitable choice of the Darboux coordinates, the coordinate map can be made nearly
pseudo-holomorphic around x, in the sense that the antiholomorphic part of its
differential vanishes at x and grows no faster than a constant times the distance
to x. Furthermore, it is easy to check that the coordinate map can be chosen to
depend continuously on the parameter t. So, we have the following lemma :

Lemma 2. Near any point x ∈ X, there exist for all t ∈ T complex Darboux co-
ordinates depending continuously on t, such that the inverse ψt : (Cn, 0)→ (X, x) of
the coordinate map is nearly pseudo-holomorphic with respect to the almost-complex
structure Jt on X and the canonical complex structure on Cn. Namely, the map
ψt, which trivially satisfies |∇ψt| = O(1) and |∇∇ψt| = O(1) on a ball of fixed
radius around 0, fails to be pseudo-holomorphic by an amount that vanishes at 0
and thus grows no faster than the distance to the origin, i.e. |∂̄ψt(z)| = O(|z|), and
|∇∂̄ψt| = O(1).

Fix a certain value of the parameter t ∈ T , and consider the Hermitian con-
nections with curvature −ikω that we have put on Lk in the introduction. Near
any point x ∈ X, using the local complex Darboux coordinates (zi) we have just
constructed, a suitable choice of a local trivialization of Lk leads to the following
connection 1-form :

Ak =
k

4

n
∑

j=1

(zjdzj − zjdzj)

(it can be readily checked that dAk = −ikω).
On the standard Cn with connection Ak, the function s(z) = exp(−k|z|2/4)

satisfies the equation ∂̄Ak
s = 0 and the bound |∇Ak

s| = O(k1/2). Multiplying this
section by a cut-off function at distance k−1/3 from the origin whose derivative is
small enough, we get a section s̃ with small compact support. Since the coordinate
map near x has small antiholomorphic part where s̃ is large, the local sections
s̃ ◦ ψ−1t of Lk defined near x by pullback of s̃ through the coordinate map can be
easily checked to be asymptotically holomorphic with respect to Jt and Ak. Thus,
for all large k and for any point x ∈ X, extending s̃ ◦ ψ−1t by 0 away from x, we
obtain asymptotically holomorphic sections st,k,x of Lk.

Since T is compact, the metrics gt induced on X by ω and Jt differ from the
chosen reference metric g by a bounded factor. Therefore, it is clear from the way
we constructed the sections st,k,x that the following statement holds :

Lemma 3. There exist constants λ > 0 and cs > 0 such that, given any x ∈
X, for all t ∈ T and large k, there exist sections st,k,x of Lk over X with the
following properties : the sections st,k,x are asymptotically Jt-holomorphic ; they
depend continuously on t ; the bound |st,k,x| ≥ cs holds over the ball of radius
10 k−1/2 around x ; and finally, |st,k,x| ≤ exp(−λk distg(x, .)2) everywhere on X.

3.3. General setup and strategy of proof. In a first step, we wish to obtain
sections σ̃t,k of Lk over U satisfying all the requirements of Theorem 3, except that
we replace (c) by the weaker condition that the restriction of σ̃t,k to Wt,k must be
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η̂-transverse to 0 over Wt,k ∩ U−k for some η̂ > 0, where U−k is the set of all points
of U at distance more than 2k−1/3 from the boundary of U . It will be shown later
that the transversality to 0 of the restriction to Wt,k ∩U−k of σ̃t,k, together with the
bounds on the second derivatives, implies the transversality to 0 of (wt,k+ σ̃t,k) over
U=

k .
To start with, we notice that there exists a constant c > 0 such thatWt,k is trivial

at small scale, namely in the ball of radius 10 c k−1/2 around any point. Indeed, if
r = 0 we just take c = 1, and otherwise we use the fact that wt,k is η-transverse to
0, which implies that at any x ∈ Wt,k, |∇wt,k(x)| > η k1/2. Since |∇∇wt,k| < C2 k
for some constant C2, defining c =

1
100
η C−12 , the derivative ∇wt,k varies by a factor

of at most 1
10

in the ball B of radius 10 c k−1/2 around x. It follows that B ∩Wt,k

is diffeomorphic to a ball.
In all the following, we work with a given fixed value of k, while keeping in mind

that all constants appearing in the estimates have to be independent of k.
For fixed k, we consider a finite set of points xi of U

−
k ⊂ U such that the balls of

radius c k−1/2 centered around xi cover U
−
k . A suitable choice of the points ensures

that their number is O(kn). For fixed D > 0, this set can be subdivided into N
subsets Sj such that the distance between two points in the same subset is at least
Dk−1/2. Furthermore, N = O(D2n) can be chosen independent of k. The precise
value of D (and consequently of N) will be determined later in the proof.

The idea is to start with the sections σt,k of Lk and proceed in steps. Let Nj

be the union of all balls of radius c k−1/2 around the points of Si for all i < j.
During the j-th step, we start from asymptotically Jt-holomorphic sections σt,k,j

which satisfy conditions (a) and (b), and such that the restriction of σt,k,j to Wt,k

is ηj-transverse to 0 over Wt,k ∩Nj, for some constant ηj independent of k. For the
first step, this requirement is void, but we choose η0 =

ε
2
in order to obtain a total

perturbation smaller than ε at the end of the process. We wish to construct σt,k,j+1

from σt,k,j by subtracting small multiples ct,k,x st,k,x of the sections st,k,x for x ∈ Sj,
in such a way that the restrictions of the resulting sections are ηj+1-transverse to
0, for some small ηj+1, over the intersection of Wt,k with all balls of radius c k−1/2

around points in Sj. Furthermore, if the coefficients of the linear combination are
chosen much smaller than ηj, transversality to 0 still holds over Wt,k ∩ Nj. Also,
since the coefficients ct,k,x are bounded, the resulting sections, which are sums of
asymptotically holomorphic sections, remain asymptotically holomorphic. So we
need to find, for all x ∈ Sj, small coefficients ct,k,x so that σt,k,j − ct,k,x st,k,x has the
desired properties near x.

3.4. Obtaining transversality near a point of Sj. In what follows, x is a
given point in Sj, and Bx is the ball of radius c k−1/2 around x. Let Ω be the closure
of the open subset of T containing all t such that Bx ∩Wt,k is not empty (when
r = 0, one gets Ω = T ). When Ω is empty, it is sufficient to define ct,k,x = 0 for all
t. Otherwise, Ω = {0} when T = {0}, and when T = [0, 1] clearly Ω is a union of
disjoint closed intervals. In any case, we choose a component I of Ω, i.e. either a
closed interval or a point.



20 II. A.H. FAMILIES OF SYMPLECTIC SUBMANIFOLDS

We can then define for all t ∈ I a point xt belonging to Bx∩Wt,k, in such a way
that xt depends continuously on t, since Wt,k depends continuously on t and always

intersects Bx in a nice way (when r = 0 one can simply choose xt = x). Let B̂t

be the ball in Wt,k of radius 3 c k−1/2 (for the metric induced by g) centered at xt.

Because of the bounds on the second derivatives of wt,k, we know that B̂t contains
Bx∩Wt,k for all t ∈ I. We now want to define a nearly holomorphic diffeomorphism

from a neighborhood of 0 in Cn−r to B̂t.
Let B̂ be the ball of radius 4ck−1/2 around 0 in Cn−r, and let B̂− be the smaller

ball of radius 3ck−1/2 around 0. We claim the following :

Lemma 4. For all t ∈ I, there exist diffeomorphisms θt from B̂ to a neighborhood
of xt in Wt,k, depending continuously on t, such that θt(0) = xt and θt(B̂

−) ⊃ B̂t,

and satisfying the following estimates over B̂ :

|∂̄θt| = O(k−1/2), |∇θt| = O(1), |∇∂̄θt| = O(1), |∇∇θt| = O(k1/2).

Proof. Recall that, by Lemma 2, there exist local complex Darboux coordi-
nates on X near x depending continuously on t with the property that the inverse
map ψt : (Cn, 0) → (X, x) satisfies the following bounds at all points at distance
O(k−1/2) from x :

|∂̄ψt| = O(k−1/2), |∇ψt| = O(1), |∇∂̄ψt| = O(1), |∇∇ψt| = O(1).

Let Tt be the kernel of the complex linear map ∂wt,k(xt) in Txt
X : it is within

O(k−1/2) of the tangent space to Wt,k at xt, but Tt is preserved by Jt. Composing

ψt with a translation and a rotation in Cn, one gets maps ψ̃t satisfying the same
requirements as ψt, but with ψ̃t(0) = xt and such that the differential of ψ̃t at 0
maps the span of the n− r first coordinates to Tt.

Furthermore, X and T are compact, so the metrics gt induced by ω and Jt differ
from the reference metric g by at most a fixed constant. It follows that, composing
ψ̃t with a fixed dilation of Cn if necessary, one may also require that the image by
ψ̃t of the ball of radius 3ck−1/2 around 0 contains the ball of radius 4ck−1/2 around
x for the reference metric g. The only price to pay is that ψ̃t is no longer a local
symplectomorphism ; all other properties still hold.

Since by definition of c the submanifolds Wt,k are trivial over the considered
balls, it follows from the implicit function theorem that Wt,k can be parametrized

around xt in the chosen coordinates as the set of points of the form ψ̃t(z, τt(z)) for
z ∈ Cn−r, where τt : Cn−r → Cr satisfies τt(0) = 0 and ∇τt(0) = O(k−1/2). The
derivatives of τt can be easily computed, since it is characterized by the equation

wt,k(ψ̃t(z, τt(z))) = 0.

Notice that it follows from the transversality to 0 of wt,k that |∇wt,k ◦ dψ̃t(v))| is
larger than a constant times k1/2|v| for all v ∈ 0 × Cr. Combining this estimate
with the bounds on the derivatives of wt,k given by asymptotic holomorphicity and

the above bounds on those of ψ̃t, one gets the following estimates for τt over the
ball B̂ :

|∂̄τt| = O(k−1/2), |∇τt| = O(1), |∇∂̄τt| = O(1), |∇∇τt| = O(k1/2).
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It is then clear that θt(z) = ψ̃t(z, τt(z)) satisfies all the required properties. ¤

Now that a local identification between Wt,k and Cn−r is available, we define
the restricted sections ŝt,k,x(z) = st,k,x(θt(z)) and σ̂t,k,j(z) = σt,k,j(θt(z)). Since
st,k,x and σt,k,j are both asymptotically holomorphic, the estimates on θt imply

that ŝt,k,x and σ̂t,k,j , as sections of the pull-back of Lk over the ball B̂, are also
asymptotically holomorphic. Furthermore, they clearly depend continuously on
t ∈ I, and ŝt,k,x remains larger than a fixed constant cs > 0 over B̂. We can then

define the complex-valued functions ft,k,x = σ̂t,k,j/ŝt,k,x over B̂, which are clearly
asymptotically holomorphic too.

After dilation of B̂ by a factor of 3ck1/2, all hypotheses of Proposition 3 are
satisfied with δ as small as desired, provided that k is large enough. Indeed, the
asymptotic holomorphicity of ft,k,x implies that, for large k, the antiholomorphic
part of the function over the dilated ball is smaller than σ = δ(log δ−1)−p. So
the local result implies that there exist complex numbers ct,k,x of norm less than δ
and depending continuously on t ∈ I, such that the functions ft,k,x − ct,k,x are σ-

transverse to 0 over the ball B̂− of radius 3ck−1/2 around 0 in Cn−r. We now notice
that the sections ĝt,k,x = σ̂t,k,j − ct,k,x ŝt,k,x, which clearly depend continuously on

t and are asymptotically holomorphic, are σ′-transverse to 0 over B̂−, for some σ′

differing from σ by at most a constant factor. Indeed,

∇ĝt,k,x = ∇(ŝt,k,x(ft,k,x − ct,k,x)) = ŝt,k,x∇ft,k,x − (ft,k,x − ct,k,x)∇ŝt,k,x.
Wherever ĝt,k,x is very small, so is ft,k,x − ct,k,x, and ∇ft,k,x is thus large. Since
ŝt,k,x remains larger than some cs > 0 and ∇ŝt,k,x is bounded by a constant times
k1/2, it follows that ∇ĝt,k,x is large wherever ĝt,k,x is very small. Putting the right
constants in the right places, one easily checks that ĝt,k,x is σ′-transverse to 0 with
σ/σ′ bounded by a fixed constant.

We now notice that the restrictions to Wt,k of the sections gt,k,x = σt,k,j −
ct,k,x st,k,x of L

k over U , which clearly are asymptotically Jt-holomorphic and depend

continuously and t, are also σ′′-transverse to 0 over B̂t for some σ′′ differing from
σ′ by at most a constant factor. Indeed, B̂t is contained in the set of all points of
the form θt(z) for z ∈ B̂−, and

gt,k,x(θt(z)) = σ̂t,k,j(z)− ct,k,x ŝt,k,x(z) = ĝt,k,x(z),

so wherever gt,k,x is smaller than σ′, the derivative of ĝt,k,x is larger than σ′.k1/2,
and since ∇θt is bounded by a fixed constant, ∇gt,k,x is large too.

Next we extend the definition of ct,k,x to all t ∈ T , in the case of T = [0, 1], since
we have defined it only over the components of Ω. However, when t 6∈ Ω, Wt,k does
not meet the ball Bx, so that there is no transversality requirement. Thus the only
constraints are that ct,k,x must depend continuously on t and remain smaller than
δ for all t. These conditions are easy to satisfy, so we have proved the following :

Lemma 5. For all large k there exist complex numbers ct,k,x smaller than δ and
depending continuously on t ∈ T such that the restriction toWt,k of σt,k,j−ct,k,x st,k,x
is σ′′-transverse to 0 over Wt,k ∩ Bx. Furthermore, for some constant p′ depending
only on the dimension, σ′′ is at least δ(log δ−1)−p

′

.
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3.5. Constructing σt,k,j+1 from σt,k,j. We can now define the sections σt,k,j+1

of Lk over U by

σt,k,j+1 = σt,k,j −
∑

x∈Sj

ct,k,x st,k,x.

Clearly the sections σt,k,j+1 are asymptotically holomorphic and depend continu-
ously on t ∈ T . Furthermore, any two points in Sj are distant of at least Dk−1/2

with D > 0, so the total size of the perturbation is bounded by a fixed multiple of δ.
So, choosing δ smaller than ηj over a constant factor (recall that ηj is the transver-
sality estimate of the previous step of the iterative process), we can ensure that
|σt,k,j+1−σt,k,j| < ηj

2
and |∇σt,k,j+1−∇σt,k,j| < ηj

2
k1/2. As a direct consequence, the

restriction to Wt,k of σt,k,j+1 is
ηj

2
-transverse to 0 wherever the restriction of σt,k,j is

ηj-transverse to 0, including over Wt,k ∩Nj (recall that Nj =
⋃

i<j

⋃

x∈Si
Bx).

Letting ηj+1 = 1
2
σ′′, it is known that for all x ∈ Sj the restriction to Wt,k of

σt,k,j−ct,k,x st,k,x is 2ηj+1-transverse to 0 over Bx∩Wt,k. So, in order to prove that the
restriction toWt,k of σt,k,j+1 is ηj+1-transverse to 0 overWt,k∩Nj+1, it is sufficient to
check that given x ∈ Sj, over Bx, the sum of the perturbations corresponding to all
points y ∈ Sj distinct from x is smaller than ηj+1, and the sum of their derivatives
is smaller than ηj+1k

1/2. In other words, since several contributions were added at
the same time (one at each point of Sj), we have to make sure that they cannot
interfere.

This is where the parameter D (minimum distance between two points in Sj)
is important : indeed, over Bx, by Lemma 3, each of the contributions of the other
points in Sj is at most of the order of δ exp(−λD2), and the sum of these terms is
O(ηj exp(−λD2)). Similarly, the derivative of that sum is O(ηj exp(−λD2) k1/2). So
the requirement that the sum of the contributions of all points of Sj distinct from
x be smaller than ηj+1 corresponds to an inequality of the form K0 exp(−λD2) <
ηj+1/ηj, where K0 is a fixed constant depending only on the geometry of X. Recall-
ing that ηj+1 is no smaller than ηj log(η

−1
j )−P for some fixed integer P , the required

inequality is
exp(λD2) > K0 log(η

−1
j )P .

This inequality, which does not depend on k, must be satisfied by every ηj, for each
of the N steps of the process.

To check that the condition on D can be enforced at all steps, we must recall
that the number of steps in the process is N = O(D2n), and study the sequence
(ηj) given by a fixed η0 > 0 and the inductive definition described above. It can
be shown (see Lemma 24 of [D1]) that the sequence (ηj) satisfies for all j a bound
of the type log(η−1j ) = O(j log(j)). It follows that log(η−1N )P = O(D2nP log(D2n)P ),
which is clearly subexponential : a choice of sufficiently large D thus ensures that
the required inequality holds at all steps. So the inductive process described above
is valid, and leads to sections σ̃t,k = σt,k,N which are asymptotically Jt-holomorphic,
depend continuously on t, and whose restrictions to Wt,k are η̂-transverse to 0 over
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U−k for η̂ = ηN . Furthermore, σ̃t,k is equal to σt,k near the boundary of U because
we only added a linear combination of sections st,k,x for x ∈ U−k , and st,k,x vanishes
by construction outside of the ball of radius k−1/3 around x. Moreover, σ̃t,k differs
from σt,k by at most

∑

j ηj, which is less than 2η0 = ε. So to complete the proof of
Theorem 3 we only have to show that the transversality result on σ̃t,k|Wt,k

implies
the transversality to 0 of (wt,k + σ̃t,k) over U

=
k .

3.6. Transversality to 0 over U=
k . At a point x ∈ Wt,k ∩ U−k where |σ̃t,k| <

η̂, we know that ∇wt,k is surjective and vanishes in all directions tangential to
Wt,k, while ∇σ̃t,k has a tangential component larger than η̂ k1/2. It follows that
∇(wt,k + σ̃t,k) is surjective. We now construct a right inverse R : (Ex ⊕C)⊗ Lk

x →
TxX whose norm is O(k−1/2).

Considering a unit length element u of Lk
x, there exists a vector û ∈ TxWt,k of

norm at most (η̂ k1/2)−1 such that ∇σ̃t,k(û) = u. Clearly ∇wt,k(û) = 0 because
û ∈ TxWt,k, so we define R(u) = û. Now consider an orthonormal frame (vi)
in Ex ⊗ Lk

x. It follows from the η-transversality to 0 of wt,k that ∇xwt,k has a
right inverse of norm smaller than (η k1/2)−1, so we obtain vectors v̂i in TxX such
that ∇wt,k(v̂i) = vi and |v̂i| < (η k1/2)−1. There exist coefficients λi such that
∇σ̃t,k(v̂i) = λi u, with |λi| < C k1/2 |v̂i| < C η−1, for some constant C such that
|∇σ̃t,k| < C k1/2 everywhere. So we define R(vi) = v̂i − λiû, which completes the
determination of R.

The norm of R is, by construction, smaller than K.k−1/2 for some K depending
only on the constants above (C, η and η̂). We thus know that ∇(wt,k + σ̃t,k)
has a right inverse smaller than K k−1/2 at any point of Wt,k ∩ U−k where |σ̃t,k| <
η̂. Furthermore we know, from the definition of asymptotic holomorphicity, that
|∇∇(wt,k + σ̃t,k)| < K ′ k for some constant K ′.

Consider a point x of U=
k where |wt,k| and |σ̃t,k| are both smaller than some α

which is simultaneously smaller than η̂
2
, ηη̂
2C

and η
2KK′ . From the η-transversality to

0 of wt,k, we know that ∇wt,k is surjective at x and has a right inverse smaller than
(η k1/2)−1. Since the connection∇ is unitary, applying the right inverse to wt,k itself,
we can follow the downward gradient flow of |wt,k|, and we are certain to reach a
point y of Wt,k at a distance d from the starting point x no larger than α (η k1/2)−1,

which is simultaneously smaller than 1
2KK′ k

−1/2 and η̂
2C
k−1/2. Furthermore if k is

large enough, d < 2k−1/3 so that y ∈ U−k .

Since |∇σ̃t,k| < C.k1/2 everywhere, |σ̃t,k(y)| − |σ̃t,k(x)| < C k1/2 d < η̂
2
, so that

|σ̃t,k(y)| < η̂, and the previous results apply at y. Also, since the second derivatives
are bounded by K ′ k everywhere, ∇x(wt,k + σ̃t,k) differs from ∇y(wt,k + σ̃t,k) by at
most K ′k d, which is smaller than 1

2K
k1/2, so that it is still surjective and admits a

right inverse of norm O(k−1/2). From this we infer immediately that (wt,k + σ̃t,k) is
transverse to 0 over all of U=

k , and the proof of Theorem 3 is complete.

4. The main result

4.1. Proof of Theorem 2. Theorem 2 follows from Theorem 3 by a sim-
ple induction argument. Indeed, to obtain asymptotically holomorphic sections of
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E ⊗ Lk which are transverse to 0 over X for any vector bundle E, we start from
the fact that E is locally trivial, so that there exists a finite covering of X by N
open subsets Uj such that E is a trivial bundle on a small neighborhood of each Uj.
We start initially from the sections st,k,0 = st,k of E ⊗ Lk, and proceed iteratively,
assuming at the beginning of the j-th step that we have constructed, for all large
k, asymptotically holomorphic sections st,k,j of E ⊗Lk which are ηj-transverse to 0
on
⋃

i<j Ui for some ηj > 0 and differ from st,k by at most jε/N .
Over a small neighborhood of Uj, we trivialize E ' Cr and decompose the sec-

tions st,k,j into their r components for this trivialization. Recall that, in order to
define the connections on E⊗Lk for which asymptotic holomorphicity and transver-
sality to 0 are expected, we have used a Hermitian connection ∇E on E. Because X
is compact the connection 1-form of ∇E in the chosen trivializations can be safely
assumed to be bounded by a fixed constant. It follows that, up to a change in the
constants, asymptotic holomorphicity and transversality to 0 over Uj with respect
to the connections on E ⊗ Lk induced by ∇E and ∇L are equivalent to asymptotic
holomorphicity and transversality to 0 with respect to the connections induced by
∇L and the trivial connection on E in the chosen trivialization. So we actually do
not have to worry about ∇E.

Now, let α be a constant smaller than both ε/rN and ηj/2r. First, using
Theorem 3, we perturb the first component of st,k,j over a neighborhood of Uj by
at most α to make it transverse to 0 over a slightly smaller neighborhood. Next,
using again Theorem 3, we perturb the second component by at most α so that the
sum of the two first components is transverse to 0, and so on, perturbing the i-th
component by at most α to make the sum of the i first components transverse to
0. The result of this process is a family of asymptotically Jt-holomorphic sections
st,k,j+1 of E ⊗ Lk which are transverse to 0 over Uj. Furthermore, since the total
perturbation is smaller than rα ≤ ηj/2, transversality to 0 still holds over Ui for
i < j, so that the hypotheses of the next step are satisfied. The construction thus
leads to sections σt,k = st,k,N which are transverse to 0 over all of X. Since at each
of the N steps the total perturbation is less than ε/N , the sections σt,k differ from
st,k by less than ε, and Theorem 2 is proved.

4.2. Symplectic isotopies. We now give the remaining part of the proof of
Corollary 2, namely the following statement :

Proposition 4. Let (Wt)t∈[0,1] be a family of symplectic submanifolds in X.
Then there exist symplectomorphisms Φt : X → X depending continuously on t,
such that Φ0 = Id and Φt(W0) = Wt.

The following strategy of proof, based on Moser’s ideas, was suggested to me
by M. Gromov. The reader unfamiliar with these techniques may use [McS1] (pp.
91-101) as a reference.

It follows immediately fromMoser’s stability theorem that there exists a continu-
ous family of symplectomorphisms φt : (W0, ω|W0

)→ (Wt, ω|Wt
). Since the symplec-

tic normal bundles to Wt are all isomorphic, Weinstein’s symplectic neighborhood
theorem allows one to extend these maps to symplectomorphisms ψt : U0 → Ut such
that ψt(W0) = Wt, where Ut is a small tubular neighborhood of Wt for all t.
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Let ρt be any family of diffeomorphisms of X extending ψt. Let ωt = ρ∗tω
and Ωt = −dωt/dt. We want to find vector fields ξt on X such that the 1-forms
αt = ιξt

ωt satisfy dαt = Ωt and such that ξt is tangent to W0 at any point of W0.
If this is possible, then define diffeomorphisms Ψt as the flow of the vector fields ξt,
and notice that

d

dt
(Ψ∗tρ

∗
tω) = Ψ∗t

(

d

dt
(ρ∗tω) + Lξt

(ρ∗tω)

)

= Ψ∗t (−Ωt + dιξt
ωt) = 0.

So the diffeomorphisms ρt◦Ψt are actually symplectomorphisms of X. Furthermore
Ψt preserves W0 by construction, so ρt ◦Ψt maps W0 to Wt, thus giving the desired
result.

So we are left with the problem of finding ξt, or equivalently αt, such that dαt =
Ωt and ξt|W0

is tangent to W0. Note that, since ρt extends the symplectomorphisms
ψt, one has ωt = ω and Ωt = 0 over U0. It follows that the condition on ξt|W0

is
equivalent to the requirement that at any point x ∈ W0, the ω-symplectic orthogonal
NxW0 to TxW0 lies in the kernel of the 1-form αt.

Since the closed 2-forms ωt are all cohomologous, one has [Ωt] = 0 in H2(X,R),
so there exist 1-forms βt on X such that dβt = Ωt. Remark that, although Ωt = 0
over U0, one cannot ensure that βt|U0

= 0 unless the class [Ωt] also vanishes in the
relative cohomology group H2(X,U0;R). So we need to work a little more to find
the proper 1-forms αt.

Over U0 one has dβt = Ωt = 0, so βt defines a class in H1(U0,R). By further
restriction, the forms βt|W0

are also closed 1-forms on W0. Let π be a projection
map U0 → W0 such that at any point x ∈ W0 the tangent space to π−1(x) is the
symplectic normal space NxW0, and let γt = π∗(βt|W0

). First we notice that, by
construction, the 1-form γt is closed over U0, and at any point x ∈ W0 the space
NxW0 lies in the kernel of γt. Furthermore the composition of π∗ and the restric-
tion map induces the identity map over H1(U0,R), so [γt] = [βt|U0

] in H1(U0,R).
Therefore there exist functions ft over U0 such that γt = βt+dft at any point of U0.

Let gt be any smooth functions over X extending ft, and let αt = βt + dgt. The
1-forms αt satisfy dαt = dβt = Ωt, and since αt|U0

= γt the space NxW0 also lies in
the kernel of αt at any x ∈ W0. So Proposition 4 is proved.

5. Properties of the constructed submanifolds

5.1. Proof of Proposition 2. This proof is based on that of a similar result
obtained by Donaldson [D1] for the submanifolds obtained from Theorem 1 (r = 1).
The result comes from a Morse theory argument, as described in [D1]. Indeed,
consider the real valued function f = log |s|2 over X −W (where W = s−1(0)). We
only have to show that, if k is large enough, all its critical points are of index at
least n− r + 1. For this purpose, let x be a critical point of f , and let us compute
the derivative ∂̄∂f at x.

First we notice that x is also a critical point of |s|2, so that s itself is not in the
image of ∇xs. Recalling that s is η-transverse to 0 for some η > 0, it follows that
∇xs is not surjective and thus |s(x)| ≥ η.
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Recalling that the scalar product is linear in the first variable and antilinear in
the second variable, we compute the derivative

∂ log |s|2 = 1

|s|2 (〈∂s, s〉+ 〈s, ∂̄s〉),

which equals zero at x. A first consequence is that, at x, |〈∂s, s〉| = |〈∂̄s, s〉| < C|s|,
where C is a constant bounding ∂̄s independently of k.

A second derivation, omitting the quantities that vanish at a critical point, yields
that, at x,

∂̄∂ log |s|2 = 1

|s|2 (〈∂̄∂s, s〉 − 〈∂s, ∂s〉+ 〈∂̄s, ∂̄s〉+ 〈s, ∂∂̄s〉).

Recall that ∂̄∂+∂∂̄ is equal to the part of type (1,1) of the curvature of the bundle
E ⊗ Lk. This is equal to −ikω ⊗ Id + R, where R is the part of type (1,1) of the
curvature of E, so that at x,

∂̄∂ log |s|2 = −ikω +
1

|s|2 (〈R.s, s〉 − 〈∂∂̄s, s〉+ 〈s, ∂∂̄s〉 − 〈∂s, ∂s〉+ 〈∂̄s, ∂̄s〉).

To go further, we have to restrict our choice of vectors to a subspace of the
tangent space TxX at x. Call Θ the space of all vectors v in TxX such that ∂s(v)
belongs to the complex line generated by s in (E ⊗ Lk)x. The subspace Θ of TxX
is clearly stable by the almost-complex structure, and its complex dimension is at
least n − r + 1. For any vector v ∈ Θ, |〈∂s(v), s〉| = |∂s(v)| |s| is smaller than
|v| |〈∂s, s〉| < C|v| |s| where C is the same constant as above, so that ∂s is O(1)
over Θ.

Since ∂̄s = O(1) and ∂∂̄s = O(k1/2) because of asymptotic holomorphicity, it
is now known that the restriction to Θ of ∂̄∂ log |s|2 is equal to −ik ω + O(k1/2).
It follows that, for all large k, given any unit length vector u ∈ Θ, the quantity
−2i ∂̄∂f(u, Ju), which equals Hf (u)+Hf (Ju) where Hf is the Hessian of f at x, is
negative. If the index of the critical point at x were less than n− r+1, there would
exist a subspace P ⊂ TxX of real dimension at least n + r over which Hf is non-
negative, and the subspace P ∩ JP of real dimension at least 2r would necessarily
intersect non-trivially Θ whose real dimension is at least 2n− 2r+2, contradicting
the previous remark. The index of the critical point x of f is thus at least n− r+1.

A standard Morse theory argument then implies that the inclusion W → X
induces an isomorphism on all homotopy (and homology) groups up to πn−r−1

(resp. Hn−r−1), and a surjection on πn−r (resp. Hn−r), which completes the proof
of Proposition 2.

5.2. Homology and Chern numbers of the submanifolds. Proposition 2
allows one to compute the middle-dimensional Betti number bn−r=dimHn−r(Wk,R)
of the constructed submanifolds. Indeed the tangent bundle TWk and the normal
bundle NWk (isomorphic to the restriction to Wk of E ⊗ Lk) are both symplectic
vector bundles over Wk. So it is well-known (see e.g. [McS1], p. 67) that they
admit underlying structures of complex vector bundles, uniquely determined up to
homotopy (in our case there exist J-stable subspaces in TX very close to TWk

and NWk, so after a small deformation one can think of these complex structures
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as induced by J). Furthermore one has TWk ⊕ NWk ' TX|Wk
. It follows that,

calling i the inclusion map Wk → X, the Chern classes of the bundle TWk can be
computed from the relation

i∗c(TX) = i∗c(E ⊗ Lk).c(TWk).

Since cn−r(TWk).[Wk] is equal to the Euler-Poincaré characteristic of Wk, and since
the spaces Hi(Wk,R) have the same dimension as Hi(X,R) for i < n − r, the
dimension of Hn−r(Wk,R) follows immediately.

For further computations, we need an estimate on this dimension :

Proposition 5. For any sequence of symplectic submanifolds Wk ⊂ X of real
codimension 2r obtained as the zero sets of asymptotically holomorphic sections of
E ⊗ Lk which are transverse to 0, the Chern classes of Wk are given by

cl(TWk) = (−1)l
(

r+l−1
l

)

(kω̂)l +O(kl−1),

where ω̂ denotes the class of 1
2π
ω in the cohomology of Wk.

This can be proved by induction on l, starting from c0(TWk) = 1, since the
above equality implies that

cl(TWk) = i∗cl(TX)−
l−1
∑

j=0

i∗cl−j(E ⊗ Lk).cj(TWk).

It can be checked that i∗cl−j(E⊗Lk) =
(

r
l−j

)

(kω̂)l−j +O(kl−j−1), so that the result

follows from a combinatorial calculation showing that
∑l

j=0(−1)j
(

r
l−j

)(

r+j−1
j

)

is

equal to 0.

Since [Wk] is Poincaré dual inX to cr(E⊗Lk), Proposition 5 yields that χ(Wk) =
cn−r(TWk).[Wk] = (−1)n−r

(

n−1
n−r

)

(kω̂)n−r.(kω̂)r.[X] + O(kn−1). Finally, Proposition

2 implies that χ(Wk) = (−1)n−r dimHn−r(Wk,R) +O(1), so that

dimHn−r(Wk,R) =
(

n−1
n−r

)

( 1
2π
[ω])n kn +O(kn−1).

5.3. Geometry of the submanifolds. Aside from the above topological in-
formation on the submanifolds, one can also try to characterize the geometry of
Wk inside X. We prove the following result, expressing the fact that the middle-
dimensional homology of Wk has many generators that are very “localized” around
any given point of X :

Proposition 6. There exists a constant C > 0 depending only on the geometry
of the manifold X with the following property : let B be any ball of small enough
radius ρ > 0 in X. For any sequence of symplectic submanifolds Wk ⊂ X of real
codimension 2r obtained as the zero sets of asymptotically holomorphic sections of
E⊗Lk which are transverse to 0, let Nk(B) be the number of independent generators
of Hn−r(Wk,R) which can be realized by cycles that are entirely included in Wk∩B.
Then, if k is large enough, one has

Nk(B) > C ρ2n dimHn−r(Wk,R).
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As a consequence, we can state that when k becomes large the submanifoldsWk

tend to “fill out” all of X, since they must intersect non-trivially with any given
ball.

The proof of Proposition 6 relies on the study of what happens when we perform
a symplectic blow-up on the manifold X inside the ball B. Recall that the blown-up
manifold X̃ is endowed with a symplectic form ω̃ which is equal to ω outside of B,
and can be described inside B using the following model on Cn around 0 : define
on Cn × (Cn − {0}) the 2-form

φ = i∂∂̄
(

(β ◦ p1)(log ‖ · ‖2 ◦ p2)
)

,

where p1 is the projection map to Cn, β is a cut-off function around the blow-up
point, and p2 is the projection on the factor Cn − {0}. The 2-form φ projects to
Cn×CPn−1, and after restriction to the graph of the blown-up manifold (i.e. the set
of all (x, y) such that x belongs to the complex line in Cn defined by y) one obtains
a closed 2-form whose restriction to the exceptional divisor is positive. Calling θ the
2-form on X̃ supported in B defined by this procedure, it can be checked that, if
ε > 0 is small enough and π is the projection map X̃ → X, the 2-form ω̃ = π∗ω+εθ
is symplectic on X̃.

If we call e ∈ H2(X̃,Z) the Poincaré dual of the exceptional divisor, since
its normal bundle is the inverse of the standard bundle over CPn−1, we have
(−e)n−1.e.[X] = 1, so that en.[X] = (−1)n−1. Furthermore, the cohomology class
of ω̃ is given by 1

2π
[ω̃] = 1

2π
π∗[ω] − ε e. Now we consider the sections sk of E ⊗ Lk

over X which define Wk, and assuming ε−1 to be an integer we write k = K + k̃
with 0 ≤ k̃ < ε−1 and εK ∈ N. Notice that ω̃ = π∗ω outside B and that we can
safely choose a metric on X̃ with the same property. Considering that the line
bundle L̃K on X̃ whose first Chern class is K

2π
[ω̃] is isomorphic to π∗LK over X̃−B,

the sections π∗sk of π∗(E ⊗ Lk) = π∗(E ⊗ Lk̃) ⊗ π∗LK obtained by pull-back of
sk satisfy all desired conditions outside B, namely asymptotic holomorphicity and
transversality to 0. If we multiply π∗sk by a cut-off function equal to 1 over X̃ −B
and vanishing over the support of θ, we now obtain asymptotically holomorphic

sections of π∗(E ⊗ Lk̃) ⊗ L̃K over X̃ which are transverse to 0 over X̃ − B. So,
if K is large enough, we can use the construction described in Theorems 2 and 3
to perturb these sections over B only to make them transverse to 0 over all of X̃.
Since there are only finitely many values of k̃, the bounds on K required for each k̃
translate as a single bound on k. Considering the zero sets of the resulting sections,
we thus obtain symplectic submanifolds W̃k ⊂ X̃ to which we can again apply
Propositions 2 and 5. The interesting remark is that, using the above estimate for
dimHn−r(W̃k,R), since ( 1

2π
[ω̃])n = ( 1

2π
[ω])n − εn (symplectic blow-ups decrease the

symplectic volume), we get for all large k

dimHn−r(W̃k,R) = dimHn−r(Wk,R)− εn
(

n−1
n−r

)

kn +O(kn−1).

This means that we have decreased the dimension of Hn−r(Wk,R) by changing the
picture only inside the ball B. To continue we need an estimate on the dependence
of ε on the radius ρ of the ball. The main constraint on ε is that εθ should be
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much smaller than π∗ω so that the perturbation does not affect the positivity of
π∗ω. The norm of θ is directly related to that of the second derivative ∂∂̄β of the
cut-off function β. Since the only constraint on β is that it should be 0 outside B
and 1 near the blow-up point, an appropriate choice of β leads to a bound of the
type |∂∂̄β| = O(ρ−2). It follows that ε can be chosen equal at least to a constant
times ρ2. So we obtain that, for a suitable value of C and for all large enough k,

dimHn−r(W̃k,R) < (1− 2Cρ2n) dimHn−r(Wk,R).

Proposition 6 now follows immediately from the following general lemma by decom-
posing Wk into (Wk −B)∪ (Wk ∩B) and perturbing slightly ρ if necessary so that
the boundary of B is transverse to Wk :

Lemma 6. Let W be a 2d-dimensional compact manifold which decomposes into
two piecesW = A∪B glued along their common boundary S, which is a smooth codi-
mension 1 submanifold in W . Assume that there exists a manifold W̃ which is iden-
tical to W outside of B, and such that dimHd(W̃ ,R) ≤ dimHd(W,R) − N . Then
there exists an N

2
-dimensional subspace in Hd(W,R) consisting of classes which can

be represented by cycles contained in B.

To prove this lemma, let H = Hd(W,R) and consider its subspaces F consisting
of all classes which can be represented by a cycle contained in A and G consisting
of all classes representable in B. We have to show that dimG ≥ N

2
. Let G⊥ be

the subspace of H orthogonal to G with respect to the intersection pairing, namely
the set of classes which intersect trivially with all classes in G. We claim that
G⊥ ⊂ F +G.

Indeed, let α be a cycle realizing a class in G⊥. Subdividing α along its inter-
section with the common boundary S of A and B, we have α = α1 + α2 where
α1 and α2 are chains respectively in A and B, such that ∂α1 = −∂α2 = β is a
(d − 1)-cycle contained in S. However β intersects trivially with any d-cycle in S
since α intersects trivially with all cycles that have a representative in B. So the
homology class represented by β in Hd−1(S,R) is trivial, and we have β = ∂γ for
some d-chain γ in S. Writing α = (α1 − γ) + (α2 + γ) and shifting slightly the two
copies of γ on either side of S, we get that [α] ∈ F +G.

It follows that, if FG is a supplementary of F∩G in F , dimFG+dimG = dim(F+
G) is larger than dimG⊥ ≥ dimH − dimG, so that dimG ≥ 1

2
(dimH − dimFG).

Thus it only remains to show that dimFG ≤ dimHd(W̃ ,R) to complete the proof of
the lemma. To do this, we remark that the morphism h : Hd(W ;R)→ Hd(W,B;R)
in the relative homology sequence is injective on FG, since its kernel is precisely G.
However, if we define F̃ and G̃ inside Hd(W̃ ,R) similarly to F and G, the subspace
F̃G̃ similarly injects intoHd(W̃ , B̃;R). Furthermore, the images of the two injections
are both equal to the image of the morphism Hd(A;R) → Hd(A, S;R) under the
identification Hd(W̃ , B̃;R) ' Hd(A, S;R) ' Hd(W,B;R), so that dimHd(W̃ ,R) ≥
dim F̃G̃ = dimFG and the proof is complete.
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6. Conclusion

This paper has extended the field of applicability of the construction outlined by
Donaldson [D1] to more general vector bundles. It is in fact probable that similar
methods can be used in other situations involving sequences of vector bundles whose
curvatures become very positive.

The statement that, in spite of the high flexibility of the construction, the sub-
manifolds obtained as zero sets of asymptotically holomorphic sections of E ⊗ Lk

which are transverse to 0 are all isotopic for a given large enough k, has impor-
tant consequences. Indeed, as suggested by Donaldson, it may allow the definition
of relatively easily computable invariants of higher-dimensional symplectic mani-
folds from the topology of their submanifolds, for example from the Seiberg-Witten
invariants of 4-dimensional submanifolds [T1][W]. Furthermore, it facilitates the
characterization of the topology of the constructed submanifolds in many cases,
thus leading the way to many examples of symplectic manifolds, some of them
possibly new.



CHAPITRE III

Symplectic 4-manifolds as branched coverings of CP2

Abstract. We show that every compact symplectic 4-manifold X

can be topologically realized as a covering of CP2 branched along
a smooth symplectic curve in X which projects as an immersed
curve with cusps in CP2. Furthermore, the covering map can be
chosen to be approximately pseudo-holomorphic with respect to
any given almost-complex structure on X.

1. Introduction

It has recently been shown by Donaldson [D2] that the existence of approxi-
mately holomorphic sections of very positive line bundles over compact symplectic
manifolds allows the construction not only of symplectic submanifolds ([D1], see
also [A1],[Pa]) but also of symplectic Lefschetz pencil structures. The aim of this
paper is to show how similar techniques can be applied in the case of 4-manifolds
to obtain maps to CP2, thus proving that every compact symplectic 4-manifold is
topologically a (singular) branched covering of CP2.

Let (X,ω) be a compact symplectic 4-manifold such that the cohomology class
1
2π
[ω] ∈ H2(X,R) is integral. This integrality condition does not restrict the dif-

feomorphism type of X in any way, since starting from an arbitrary symplectic
structure one can always perturb it so that 1

2π
[ω] becomes rational, and then mul-

tiply ω by a constant factor to obtain integrality. A compatible almost-complex
structure J on X and the corresponding Riemannian metric g are also fixed.

Let L be the complex line bundle on X whose first Chern class is c1(L) =
1
2π
[ω]. Fix a Hermitian structure on L, and let ∇L be a Hermitian connection on L

whose curvature 2-form is equal to −iω (it is clear that such a connection always
exists). The key observation is that, for large values of an integer parameter k, the
line bundles Lk admit many approximately holomorphic sections, thus making it
possible to obtain sections which have nice transversality properties.

For example, one such section can be used to define an approximately holomor-
phic symplectic submanifold in X [D1]. Similarly, constructing two sections sat-
isfying certain transversality requirements yields a Lefschetz pencil structure [D2].
In our case, the aim is to construct, for large enough k, three sections s0k, s

1
k and

s2k of Lk satisfying certain transversality properties, in such a way that the three
sections do not vanish simultaneously and that the map from X to CP2 defined by
x 7→ [s0k(x) : s

1
k(x) : s

2
k(x)] is a branched covering.

Let us now describe more precisely the notion of approximately holomorphic
singular branched covering. Fix a constant ε > 0, and let U be a neighborhood of a
point x in an almost-complex 4-manifold. We say that a local complex coordinate

31
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map φ : U → C2 is ε-approximately holomorphic if, at every point, |φ∗J − J0| ≤ ε,
where J0 is the canonical complex structure on C2. Another equivalent way to state
the same property is the bound |∂̄φ(u)| ≤ ε|∇φ(u)| for every tangent vector u.

Definition 1. A map f : X → CP2 is locally ε-holomorphically modelled at
x on a map g : C2 → C2 if there exist neighborhoods U of x in X and V of f(x)
in CP2, and ε-approximately holomorphic C1 coordinate maps φ : U → C2 and
ψ : V → C2 such that f = ψ−1 ◦ g ◦ φ over U .

Definition 2. A map f : X → CP2 is an ε-holomorphic singular covering
branched along a submanifold R ⊂ X if its differential is surjective everywhere
except at the points of R, where rank(df) = 2, and if at any point x ∈ X it is locally
ε-holomorphically modelled on one of the three following maps :

(i) local diffeomorphism : (z1, z2) 7→ (z1, z2) ;
(ii) branched covering : (z1, z2) 7→ (z21 , z2) ;
(iii) cusp covering : (z1, z2) 7→ (z31 − z1z2, z2).

In particular it is clear that the cusp model occurs only in a neighborhood of
a finite set of points C ⊂ R, and that the branched covering model occurs only in
a neighborhood of R (away from C), while f is a local diffeomorphism everywhere
outside of a neighborhood of R. Moreover, the set of branch points R and its
projection f(R) can be described as follows in the local models : for the branched
covering model, R = {(z1, z2), z1 = 0} and f(R) = {(x, y), x = 0} ; for the cusp
covering model, R = {(z1, z2), 3z21 − z2 = 0} and f(R) = {(x, y), 27x2− 4y3 = 0}.

It follows that, if ε < 1, R is a smooth 2-dimensional submanifold in X, approx-
imately J-holomorphic, and therefore symplectic, and that f(R) is an immersed
symplectic curve in CP2 except for a finite number of cusps.

We now state our main result :

Theorem 1. For any ε > 0 there exists an ε-holomorphic singular covering map
f : X → CP2.

The techniques involved in the proof of this result are similar to those intro-
duced by Donaldson in [D1] : the first ingredient is a local transversality result
stating roughly that, given approximately holomorphic sections of certain bundles,
it is possible to ensure that they satisfy certain transversality estimates over a small
ball in X by adding to them small and localized perturbations. The other ingre-
dient is a globalization principle, which, if the small perturbations providing local
transversality are sufficiently well localized, ensures that a transversality estimate
can be obtained over all of X by combining the local perturbations.

We now define more precisely the notions of approximately holomorphic sections
and of transversality with estimates. We will be considering sequences of sections of
complex vector bundles Ek over X, for all large values of the integer k, where each
of the bundles Ek carries naturally a Hermitian metric and a Hermitian connection.
These connections together with the almost complex structure J on X yield ∂ and ∂̄
operators on Ek. Moreover, we choose to rescale the metric on X, and use gk = k.g :
for example, the diameter of X is multiplied by k1/2, and all derivatives of order
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p are divided by kp/2. The reason for this rescaling is that the vector bundles Ek

we will consider are derived from Lk, on which the natural Hermitian connection
induced by ∇L has curvature −ikω.

Definition 3. Let (sk)kÀ0 be a sequence of sections of complex vector bundles
Ek over X. The sections sk are said to be asymptotically holomorphic if there
exist constants (Cp)p∈N such that, for all k and at every point of X, |sk| ≤ C0,
|∇psk| ≤ Cp and |∇p−1∂̄sk| ≤ Cpk

−1/2 for all p ≥ 1, where the norms of the
derivatives are evaluated with respect to the metrics gk = k g.

Definition 4. Let sk be a section of a complex vector bundle Ek, and let η > 0
be a constant. The section sk is said to be η-transverse to 0 if, at any point x ∈ X
where |sk(x)| < η, the covariant derivative ∇sk(x) : TxX → (Ek)x is surjective and
has a right inverse of norm less than η−1 w.r.t. the metric gk.

We will often say that a sequence (sk)kÀ0 of sections of Ek is transverse to 0
(without precising the constant) if there exists a constant η > 0 independent of k
such that η-transversality to 0 holds for all large k.

In this definition of transversality, two cases are of specific interest. First, when
Ek is a line bundle, and if one assumes the sections to be asymptotically holomor-
phic, transversality to 0 can be equivalently expressed by the property

∀x ∈ X, |sk(x)| < η ⇒ |∇sk(x)|gk
> η.

Next, when Ek has rank greater than 2 (or more generally than the complex di-
mension of X), the property actually means that |sk(x)| ≥ η for all x ∈ X.

An important point to keep in mind is that transversality to 0 is an open prop-
erty : if s is η-transverse to 0, then any section σ such that |s − σ|C1 < ε is
(η − ε)-transverse to 0.

The interest of such a notion of transversality with estimates is made clear by
the following observation :

Lemma 1. Let γk be asymptotically holomorphic sections of vector bundles Ek

over X, and assume that the sections γk are transverse to 0. Then, for large enough
k, the zero set of γk is a smooth symplectic submanifold in X.

This lemma follows from the observation that, where γk vanishes, |∂̄γk| =
O(k−1/2) by the asymptotic holomorphicity property while ∂γk is bounded from
below by the transversality property, thus ensuring that for large enough k the zero
set is smooth and symplectic, and even asymptotically J-holomorphic. We can now
write our second result, which is a one-parameter version of Theorem 1 :

Theorem 2. Let (Jt)t∈[0,1] be a family of almost-complex structures on X com-
patible with ω. Fix a constant ε > 0, and let (st,k)t∈[0,1],kÀ0 be asymptotically Jt-
holomorphic sections of C3 ⊗ Lk, such that the sections st,k and their derivatives
depend continuously on t.

Then, for all large enough values of k, there exist asymptotically Jt-holomorphic
sections σt,k of C3 ⊗Lk, nowhere vanishing, depending continuously on t, and such
that, for all t ∈ [0, 1], |σt,k − st,k|C3,gk

≤ ε and the map X → CP2 defined by σt,k is
an approximately holomorphic singular covering with respect to Jt.
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Note that, although we allow the almost-complex structure on X to depend on
t, we always use the same metric gk = k g independently of t. Therefore, there is
no special relation between gk and Jt. However, since the parameter space [0, 1] is
compact, we know that the metric defined by ω and Jt differs from g by at most
a constant factor, and therefore up to a change in the constants this has no real
influence on the transversality and holomorphicity properties.

We now describe more precisely the properties of the approximately holomorphic
singular coverings constructed in Theorems 1 and 2, in order to state a uniqueness
result for such coverings.

Definition 5. Let sk be nowhere vanishing asymptotically holomorphic sections
of C3 ⊗ Lk. Define the corresponding projective maps fk = Psk from X to CP2 by
fk(x) = [s0k(x) : s

1
k(x) : s

2
k(x)]. Define the (2, 0)-Jacobian Jac(fk) = det(∂fk), which

is a section of the line bundle Λ2,0T ∗X ⊗ f ∗kΛ
2,0TCP2 = KX ⊗ L3k. Finally, define

R(sk) to be the set of points of X where Jac(fk) vanishes, i.e. where ∂fk is not
surjective.

Given a constant γ > 0, we say that sk satisfies the transversality property P3(γ)
if |sk| ≥ γ and |∂fk|gk

≥ γ at every point of X, and if Jac(fk) is γ-transverse to 0.

If sk satisfies P3(γ) for some γ > 0 and if k is large enough, then it follows from
Lemma 1 that R(sk) is a smooth symplectic submanifold in X. By analogy with
the expected properties of the set of branch points, it is therefore natural to require
such a property for the sections which define our covering maps.

Furthermore, recall that one expects the projection to CP2 of the set of branch
points to be an immersed curve except at only finitely many non-degenerate cusps.
Forget temporarily the antiholomorphic derivative ∂̄fk, and consider only the holo-
morphic part. Then the cusps correspond to the points of R(sk) where the kernel of
∂fk and the tangent space to R(sk) coincide (in other words, the points where the
tangent space to R(sk) becomes “vertical”). Since R(sk) is the set of points where
Jac(fk) = 0, the cusp points are those where the quantity ∂fk ∧ ∂Jac(fk) vanishes.

Note that, along R(sk), ∂fk has complex rank 1 and so is actually a nowhere
vanishing (1, 0)-form with values in the rank 1 subbundle Im ∂fk ⊂ f ∗kTCP2. In a
neighborhood of R(sk), this is no longer true, but one can project ∂fk onto a rank 1
subbundle in f ∗kTCP2, thus obtaining a nonvanishing (1, 0)-form π(∂fk) with values
in a line bundle. Cusp points are then characterized in R(sk) by the vanishing of
π(∂fk) ∧ ∂Jac(fk), which is a section of a line bundle. Therefore, it is natural to
require that the restriction to R(sk) of this last quantity be transverse to 0, since
it implies that the cusp points are isolated and in some sense non-degenerate.

It is worth noting that, up to a change of constants in the estimates, this
transversality property is actually independent of the choice of the subbundle of
f ∗kTCP2 on which one projects ∂fk, as long as π(∂fk) remains bounded from below.

For convenience, we introduce the following notations :

Definition 6. Let sk be asymptotically holomorphic sections of C3 ⊗ Lk and
fk = Psk. Assume that sk satisfies P3(γ) for some γ > 0. Consider the rank
one subbundle (Im ∂fk)|R(sk) of f ∗kTCP2 over R(sk), and define L(sk) to be its
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extension over a neighborhood of R(sk) as a subbundle of f ∗kTCP2, constructed by
radial parallel transport along directions normal to R(sk). Finally, define, over the
same neighborhood of R(sk), T (sk) = π(∂fk)∧∂Jac(fk), where π : f ∗kTCP2 → L(sk)
is the orthogonal projection.

We say that asymptotically holomorphic sections sk of C3 ⊗ Lk are γ-generic if
they satisfy P3(γ) and if the restriction to R(sk) of T (sk) is γ-transverse to 0 over
R(sk). We then define the set of cusp points C(sk) as the set of points of R(sk)
where T (sk) = 0.

In a holomorphic setting, such a genericity property would be sufficient to ensure
that the map fk = Psk is a singular branched covering. However, in our case, extra
difficulties arise because we only have approximately holomorphic sections. This
means that at a point of R(sk), although ∂fk has rank 1, we have no control over
the rank of ∂̄fk, and the local picture may be very different from what one expects.
Therefore, we need to control the antiholomorphic part of the derivative along the
set of branch points by adding the following requirement :

Definition 7. Let sk be γ-generic asymptotically J-holomorphic sections of
C3 ⊗ Lk. We say that sk is ∂̄-tame if there exist constants (Cp)p∈N and c > 0,
depending only on the geometry of X and the bounds on sk and its derivatives,
and an ω-compatible almost complex structure J̃k, such that the following properties
hold :

(1) ∀p ∈ N, |∇p(J̃k − J)|gk
≤ Cpk

−1/2 ;

(2) the almost-complex structure J̃k is integrable over the set of points whose
gk-distance to CJ̃k

(sk) is less than c (the subscript indicates that one uses ∂J̃k
rather

than ∂J to define C(sk)) ;
(3) the map fk = Psk is J̃k-holomorphic at every point of X whose gk-distance

to CJ̃k
(sk) is less than c ;

(4) at every point of RJ̃k
(sk), the antiholomorphic derivative ∂̄J̃k

(Psk) vanishes
over the kernel of ∂J̃k

(Psk).

Note that since J̃k is within O(k−1/2) of J , the notions of asymptotic J-holo-
morphicity and asymptotic J̃k-holomorphicity actually coincide, because the ∂ and
∂̄ operators differ only by O(k−1/2). Furthermore, if k is large enough, then γ-
genericity for J implies γ ′-genericity for J̃k as well for some γ ′ slightly smaller than
γ ; and, because of the transversality properties, the sets RJ̃k

(sk) and CJ̃k
(sk) lie

within O(k−1/2) of RJ(sk) and CJ(sk).
In the case of families of sections depending continuously on a parameter t ∈

[0, 1], it is natural to also require that the almost complex structures J̃t,k close to
Jt for every t depend continuously on t. We claim the following :

Theorem 3. Let sk be asymptotically J-holomorphic sections of C3 ⊗ Lk. As-
sume that the sections sk are γ-generic and ∂̄-tame. Then, for all large enough
values of k, the maps fk = Psk are εk-holomorphic singular branched coverings, for
some constants εk = O(k−1/2).
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Therefore, in order to prove Theorems 1 and 2 it is sufficient to construct γ-
generic and ∂̄-tame sections (resp. one-parameter families of sections) of C3 ⊗ Lk.
Even better, we have the following uniqueness result for these particular singular
branched coverings :

Theorem 4. Let s0,k and s1,k be sections of C3⊗Lk, asymptotically holomorphic
with respect to ω-compatible almost-complex structures J0 and J1 respectively. As-
sume that s0,k and s1,k are γ-generic and ∂̄-tame. Then there exist almost-complex
structures (Jt)t∈[0,1] interpolating between J0 and J1, and a constant η > 0, with
the following property : for all large enough k, there exist sections (st,k)t∈[0,1],kÀ0 of
C3⊗Lk interpolating between s0,k and s1,k, depending continuously on t, which are,
for all t ∈ [0, 1], asymptotically Jt-holomorphic, η-generic and ∂̄-tame with respect
to Jt.

In particular, for large k the two approximately holomorphic singular branched
coverings Ps0,k and Ps1,k are isotopic among approximately holomorphic singular
branched coverings.

Therefore, there exists for all large k a canonical isotopy class of singular bran-
ched coverings X → CP2, which could potentially be used to define symplectic
invariants of X.

The remainder of this article is organized as follows : Section 2 describes the
process of perturbing asymptotically holomorphic sections of bundles of rank greater
than 2 to make sure that they remain away from zero. Section 3 deals with further
perturbation in order to obtain γ-genericity. Section 4 describes a way of achieving
∂̄-tameness, and therefore completes the proofs of Theorems 1, 2 and 4. Finally,
Theorem 3 is proved in Section 5, and Section 6 deals with various related remarks.

Acknowledgments. The author wishes to thank Misha Gromov for valuable
suggestions and comments, and Christophe Margerin for helpful discussions.

2. Nowhere vanishing sections

2.1. Non-vanishing of sk. Our strategy to prove Theorem 1 is to start with
given asymptotically holomorphic sections sk (for example sk = 0) and perturb
them in order to obtain the required properties ; the proof of Theorem 2 then relies
on the same arguments, with the added difficulty that all statements must apply to
1-parameter families of sections.

The first step is to ensure that the three components s0k, s
1
k and s2k do not vanish

simultaneously, and more precisely that, for some constant η > 0 independent of k,
the sections sk are η-transverse to 0, i.e. |sk| ≥ η over all of X. Therefore, the first
ingredient in the proof of Theorems 1 and 2 is the following result :

Proposition 1. Let (sk)kÀ0 be asymptotically holomorphic sections of C3⊗Lk,
and fix a constant ε > 0. Then there exists a constant η > 0 such that, for all large
enough values of k, there exist asymptotically holomorphic sections σk of C3 ⊗ Lk

such that |σk − sk|C3,gk
≤ ε and that |σk| ≥ η at every point of X. Moreover, the

same statement holds for families of sections indexed by a parameter t ∈ [0, 1].
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Proposition 1 is a direct consequence of the main theorem in [A1], where it
is proved that, given any complex vector bundle E, asymptotically holomorphic
sections of E⊗Lk (or 1-parameter families of such sections) can be made transverse
to 0 by small perturbations : Proposition 1 follows simply by considering the case
where E is the trivial bundle of rank 3. However, for the sake of completeness and
in order to introduce tools which will also be used in later parts of the proof, we
give here a shorter argument dealing with the specific case at hand.

There are three ingredients in the proof of Proposition 1. The first one is the
existence of many localized asymptotically holomorphic sections of the line bundle
Lk for sufficiently large k.

Definition 8. A section s of a vector bundle Ek has Gaussian decay in Cr

norm away from a point x ∈ X if there exists a polynomial P and a constant
λ > 0 such that for all y ∈ X, |s(y)|, |∇s(y)|gk

, . . . , |∇rs(y)|gk
are all bounded by

P (d(x, y)) exp(−λ d(x, y)2), where d(., .) is the distance induced by gk.
The decay properties of a family of sections are said to be uniform if there exist

P and λ such that the above bounds hold for all sections of the family, independently
of k and of the point x at which decay occurs for a given section.

Lemma 2 ([D1],[A1]). Given any point x ∈ X, for all large enough k, there
exist asymptotically holomorphic sections srefk,x of Lk over X satisfying the following

bounds : |srefk,x| ≥ cs at every point of the ball of gk-radius 1 centered at x, for some

universal constant cs > 0 ; and the sections srefk,x have uniform Gaussian decay away

from x in C3 norm.
Moreover, given a one-parameter family of ω-compatible almost-complex struc-

tures (Jt)t∈[0,1], there exist one-parameter families of sections sreft,k,x which are asymp-
totically Jt-holomorphic for all t, depend continuously on t and satisfy the same
bounds.

The first part of this statement is Proposition 11 of [D1], while the extension
to one-parameter families is carried out in Lemma 3 of [A1]. Note that here we
require decay with respect to the C3 norm instead of C0, but the bounds on all
derivatives follow immediately from the construction of these sections : indeed,
they are modelled on f(z) = exp(−|z|2/4) in a local approximately holomorphic
Darboux coordinate chart for kω at x and in a suitable local trivialization of Lk

where the connection 1-form is 1
4

∑

(zjdz̄j − z̄jdzj). Therefore, it is sufficient to
notice that the model function has Gaussian decay and that all derivatives of the
coordinate map are uniformly bounded because of the compactness of X.

More precisely, the result of existence of local approximately holomorphic Dar-
boux coordinate charts needed for Lemma 2 (and throughout the proofs of the main
theorems as well) is the following (see also [D1]) :

Lemma 3. Near any point x ∈ X, for any integer k, there exist local complex
Darboux coordinates (z1k, z

2
k) : (X, x)→ (C2, 0) for the symplectic structure kω (i.e.

such that the pullback of the standard symplectic structure of C2 is kω) such that,
denoting by ψk : (C2, 0) → (X, x) the inverse of the coordinate map, the following
bounds hold uniformly in x and k : |z1k(y)| + |z2k(y)| = O(distgk

(x, y)) on a ball of
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fixed radius around x ; |∇rψk|gk
= O(1) for all r ≥ 1 on a ball of fixed radius around

0 ; and, with respect to the almost-complex structure J on X and the canonical
complex structure J0 on C2, |∂̄ψk(z)|gk

= O(k−1/2|z|) and |∇r∂̄ψ|gk
= O(k−1/2) for

all r ≥ 1 on a ball of fixed radius around 0.
Moreover, given a continuous 1-parameter family of ω-compatible almost-complex

structures (Jt)t∈[0,1] and a continuous family of points (xt)t∈[0,1], one can find for all
t coordinate maps near xt satisfying the same estimates and depending continuously
on t.

Proof. By Darboux’s theorem, there exists a local symplectomorphism φ from
a neighborhood of 0 in C2 with its standard symplectic structure to a neighborhood
of x in (X,ω). It is well-known that the space of symplectic R-linear endomorphisms
of C2 which intertwine the complex structures J0 and φ∗J(x) is non-empty (and
actually isomorphic to U(2)). So, choosing such a linear map Ψ and defining ψ =
φ◦Ψ, one gets a local symplectomorphism such that ∂̄ψ(0) = 0. Moreover, because
of the compactness of X, it is possible to carry out the construction in such a
way that, with respect to the metric g, all derivatives of ψ are bounded over a
neighborhood of x by uniform constants which do not depend on x. Therefore, over a
neighborhood of x one can assume that |∇(ψ−1)|g = O(1), as well as |∇rψ|g = O(1)
and |∇r∂̄ψ|g = O(1) ∀r ≥ 1.

Define ψk(z) = ψ(k−1/2z), and switch to the metric gk : then ∂̄ψk(0) = 0, and
at every point near x, |∇(ψ−1k )|gk

= |∇(ψ−1)|g = O(1). Moreover, |∇rψk|gk
=

O(k(1−r)/2) = O(1) and |∇r∂̄ψk|gk
= O(k−r/2) = O(k−1/2) for all r ≥ 1. Finally,

since |∇∂̄ψk|gk
= O(k−1/2) and ∂̄ψk(0) = 0 we have |∂̄ψk(z)|gk

= O(k−1/2|z|), so
that all expected estimates hold. Because of the compactness of X, the estimates
are uniform in x, and because the maps ψk for different values of k differ only by a
rescaling, the estimates are also uniform in k.

In the case of a one-parameter family of almost-complex structures, there is
only one thing to check in order to carry out the same construction for every value
of t ∈ [0, 1] while ensuring continuity in t : given a one-parameter family of local
Darboux maps φt near xt (the existence of such maps depending continuously on
t is trivial), one must check the existence of a continuous one-parameter family of
R-linear symplectic endomorphisms Ψt of C2 intertwining the complex structures
J0 and φ∗tJt(xt) on C2. To prove this, remark that for every t the set of these
endomorphisms of C2 can be identified with the group U(2). Therefore, what we
are looking for is a continuous section (Ψt)t∈[0,1] of a principal U(2)-bundle over
[0, 1]. Since [0, 1] is contractible, this bundle is necessarily trivial and therefore has
a continuous section. This proves the existence of the required maps Ψt, so one can
define ψt = φt ◦ Ψt, and set ψt,k(z) = ψt(k

−1/2z) as above. The expected bounds
follow naturally ; the estimates are uniform in t because of the compactness of
[0, 1]. ¤

The second tool we need for Proposition 1 is the following local transversality
result, which involves ideas similar to those in [D1] and in §2 of [A1] but applies to
maps from Cn to Cm with m > n rather than m = 1 :
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Proposition 2. Let f be a function defined over the ball B+ of radius 11
10

in

Cn with values in Cm, with m > n. Let δ be a constant with 0 < δ < 1
2
, and let

η = δ log(δ−1)−p where p is a suitable fixed integer depending only on the dimension
n. Assume that f satisfies the following bounds over B+ :

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then, there exists w ∈ Cm, with |w| ≤ δ, such that |f − w| ≥ η over the interior
ball B of radius 1.

Moreover, if one considers a one-parameter family of functions (ft)t∈[0,1] sat-
isfying the same bounds, then one can find for all t elements wt ∈ Cm depending
continuously on t such that |wt| ≤ δ and |ft − wt| ≥ η over B.

This statement is proved in Section 2.3. The last, and most crucial, ingredient of
the proof of Proposition 1 is a globalization principle due to Donaldson [D1] which
we state here in a general form.

Definition 9. A family of properties P(ε, x)x∈X,ε>0 of sections of bundles over
X is local and Cr-open if, given a section s satisfying P(ε, x), any section σ such
that |σ(x) − s(x)|, |∇σ(x) − ∇s(x)|, . . . , |∇rσ(x) − ∇rs(x)| are smaller than η
satisfies P(ε− Cη, x), where C is a constant (independent of x and ε).

For example, the property |s(x)| ≥ ε is local and C0-open ; ε-transversality to 0
of s at x is local and C1-open.

Proposition 3 ([D1]). Let P(ε, x)x∈X,ε>0 be a local and Cr-open family of prop-
erties of sections of vector bundles Ek over X. Assume that there exist constants c,
c′ and p such that, given any x ∈ X, any small enough δ > 0, and asymptotically
holomorphic sections sk of Ek, there exist, for all large enough k, asymptotically
holomorphic sections τk,x of Ek with the following properties : (a) |τk,x|Cr,gk

< δ,
(b) the sections 1

δ
τk,x have uniform Gaussian decay away from x in Cr-norm, and

(c) the sections sk + τk,x satisfy the property P(η, y) for all y ∈ Bgk
(x, c), with

η = c′δ log(δ−1)−p.
Then, given any α > 0 and asymptotically holomorphic sections sk of Ek, there

exist, for all large enough k, asymptotically holomorphic sections σk of Ek such
that |sk − σk|Cr,gk

< α and the sections σk satisfy P(ε, x) ∀x ∈ X for some ε > 0
independent of k.

Moreover the same result holds for one-parameter families of sections, provided
the existence of sections τt,k,x satisfying properties (a), (b), (c) and depending con-
tinuously on t ∈ [0, 1].

This result is a general formulation of the argument contained in Section 3
of [D1] (see also [A1], §3.3 and 3.5). For the sake of completeness, let us recall
just a brief outline of the construction. To achieve property P over all of X, the

idea is to proceed iteratively : in step j, one starts from sections s
(j)
k satisfying

P(δj, x) for all x in a certain (possibly empty) subset U
(j)
k ⊂ X, and perturbs

them by less than 1
2C
δj (where C is the same constant as in Definition 9) to get

sections s
(j+1)
k satisfying P(δj+1, x) over certain balls of gk-radius c, with δj+1 =
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c′(
δj

2C
) log((

δj

2C
)−1)−p. Because the property P is open, s

(j+1)
k also satisfies P(δj+1, x)

over U
(j)
k , therefore allowing one to obtain P everywhere after a certain number N

of steps.
The catch is that, since the value of δj decreases after each step and we want

P(ε, x) with ε independent of k, the number of steps needs to be bounded inde-
pendently of k. However, the size of X for the metric gk increases as k increases,
and the number of balls of radius c needed to cover X therefore also increases. The
key observation due to Donaldson [D1] is that, because of the Gaussian decay of
the perturbations, if one chooses a sufficiently large constant D, one can in a single
step carry out perturbations centered at as many points as one wants, provided
that any two of these points are distant of at least D with respect to gk : the idea
is that each of the perturbations becomes sufficiently small in the vicinity of the
other perturbations in order to have no influence on property P there (up to a slight
decrease of δj+1). Therefore the construction is possible with a bounded number of
steps N and yields property P(ε, x) for all x ∈ X and for all large enough k, with
ε = δN independent of k.

We now show how to derive Proposition 1 from Lemma 2 and Propositions 2
and 3, following the ideas contained in [D1]. Proposition 1 follows directly from
Proposition 3 by considering the property P defined as follows : say that a section sk
of C3⊗Lk satisfies P(ε, x) if |sk(x)| ≥ ε. This property is local and open in C0-sense,
and therefore also in C3-sense. So it is sufficient to check that the assumptions of
Proposition 3 hold for P .

Let x ∈ X, 0 < δ < 1
2
, and consider asymptotically holomorphic sections sk of

C3 ⊗ Lk (or 1-parameter families of sections st,k). Recall that Lemma 2 provides
asymptotically holomorphic sections srefk,x of Lk which have Gaussian decay away
from x and remain larger than a constant cs over Bgk

(x, 1). Therefore, dividing sk
by srefk,x yields asymptotically holomorphic functions uk on Bgk

(x, 1) with values in

C3. Next, one uses a local approximately holomorphic coordinate chart as given
by Lemma 3 to obtain, after composing with a fixed dilation of C2 if necessary,
functions vk defined on the ball B+ ⊂ C2, with values in C3, and satisfying the
estimates |vk| = O(1), |∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2).

Let C0 be a constant bounding |srefk,x|C3,gk
, and let α = δ

C0
log(( δ

C0
)−1)−p. Then,

provided that k is large enough, Proposition 2 yields constants wk ∈ C3, with
|wk| ≤ δ

C0
, such that |vk − wk| ≥ α over the unit ball in C2. Equivalently, one has

|uk − wk| ≥ α over Bgk
(x, c) for some constant c. Multiplying by srefk,x again, one

gets that |sk − wk s
ref
k,x| ≥ csα over Bgk

(x, c).
The assumptions of Proposition 3 are therefore satisfied if one chooses η = csα

(larger than c′δ log(δ−1)−p for a suitable constant c′ > 0) and τk,x = −wk s
ref
k,x.

Moreover, the same argument applies to one-parameter families of sections st,k (one
similarly constructs perturbations τt,k,x = −wt,k s

ref
t,k,x). So Proposition 3 applies,

which ends the proof of Proposition 1.

2.2. Non-vanishing of ∂fk. We have constructed asymptotically holomorphic
sections sk = (s0k, s

1
k, s

2
k) of C3 ⊗ Lk for all large enough k which remain away from



2. NOWHERE VANISHING SECTIONS 41

zero. Therefore, the maps fk = Psk from X to CP2 are well defined, and they
are asymptotically holomorphic, because the lower bound on |sk| implies that the
derivatives of fk are O(1) and that ∂̄fk and its derivatives are O(k−1/2) (taking the
metric gk on X and the standard metric on CP2). Our next step is to ensure, by
further perturbation of the sections sk, that ∂fk vanishes nowhere and remains far
from zero :

Proposition 4. Let δ and γ be two constants such that 0 < δ < γ
4
, and let

(sk)kÀ0 be asymptotically holomorphic sections of C3 ⊗ Lk such that |sk| ≥ γ at
every point of X and for all k. Then there exists a constant η > 0 such that, for
all large enough values of k, there exist asymptotically holomorphic sections σk of
C3 ⊗ Lk such that |σk − sk|C3,gk

≤ δ and that the maps fk = Pσk satisfy the bound
|∂fk|gk

≥ η at every point of X. Moreover, the same statement holds for families
of sections indexed by a parameter t ∈ [0, 1].

Proposition 4 is proved in the same manner as Proposition 1 and uses the same
three ingredients, namely Lemma 2 and Propositions 2 and 3. Proposition 4 follows
directly from Proposition 3 by considering the following property : say that a section
s of C3 ⊗ Lk of norm everywhere larger than γ

2
satisfies P(η, x) if the map f = Ps

satisfies |∂f(x)|gk
≥ η. This property is local and open in C1-sense, and therefore

also in C3-sense, because the lower bound on |s| makes f depend nicely on s (by
the way, note that the bound |s| ≥ γ

2
is always satisfied in our setting since one

considers only sections differing from sk by less than γ
4
). So one only needs to check

that the assumptions of Proposition 3 hold for this property P .
Therefore, let x ∈ X, 0 < δ < γ

4
, and consider nonvanishing asymptotically

holomorphic sections sk of C3⊗Lk and the corresponding maps fk = Psk. Without
loss of generality, composing with a rotation in C3 (constant over X), one can
assume that sk(x) is directed along the first component in C3, i.e. that s1k(x) =
s2k(x) = 0 and therefore |s0k(x)| ≥ γ

2
. Because one has a uniform bound on |∇sk|,

there exists a constant r > 0 (independent of k) such that |s0k| ≥ γ
3
over Bgk

(x, r).
Therefore, over this ball one can define a map to C2 by

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.

It is quite easy to see that, at any point y ∈ Bgk
(x, r), the ratio between |∂hk(y)|

and |∂fk(y)| is bounded by a uniform constant. Therefore, what one actually needs
to prove is that, for large enough k, a perturbation of sk with Gaussian decay and
smaller than δ can make |∂hk| larger than η = c′δ (log δ−1)−p over a ball Bgk

(x, c),
for some constants c, c′ and p.

Recall that Lemma 2 provides asymptotically holomorphic sections srefk,x of Lk

which have Gaussian decay away from x and remain larger than a constant cs over
Bgk

(x, 1). Moreover, consider a local approximately holomorphic coordinate chart
(as given by Lemma 3) on a neighborhood of x, and call z1k and z2k the two complex
coordinate functions. Define the two 1-forms

µ1k = ∂
(z1ks

ref
k,x

s0k

)

and µ2k = ∂
(z2ks

ref
k,x

s0k

)

,
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and notice that at x they are both of norm larger than a fixed constant (which can
be expressed as a function of cs and the uniform C0 bound on sk), and mutually
orthogonal. Moreover µ1k, µ

2
k and their derivatives are uniformly bounded because of

the bounds on srefk,x, on s
0
k and on the coordinate map ; these bounds are independent

of k. Finally, µ1k and µ2k are asymptotically holomorphic because all the ingredients
in their definition are asymptotically holomorphic and |s0k| is bounded from below.

If follows that, for some constant r′, one can express ∂hk on the ball Bgk
(x, r′) as

(∂h1k, ∂h
2
k) = (u11k µ

1
k+u

12
k µ

2
k, u

21
k µ

1
k+u

22
k µ

2
k), thus defining a function uk on Bgk

(x, r′)
with values in C4. The properties of µi

k described above imply that the ratio between
|∂hk| and |uk| is bounded between two constants which do not depend on k (because
of the bounds on µ1k and µ2k, and of their orthogonality at x), and that the map uk

is asymptotically holomorphic (because of the asymptotic holomorphicity of µi
k).

Next, one uses the local approximately holomorphic coordinate chart to obtain
from uk, after composing with a fixed dilation of C2 if necessary, functions vk
defined on the ball B+ ⊂ C2, with values in C4, and satisfying the estimates |vk| =
O(1), |∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2). Let C0 be a constant larger than
|ziksrefk,x|C3,gk

, and let α = δ
4C0

. log(( δ
4C0

)−1)−p. Then, by Proposition 2, for all large

enough k there exist constants wk = (w11
k , w

12
k , w

21
k , w

22
k ) ∈ C4, with |wk| ≤ δ

4C0
,

such that |vk − wk| ≥ α over the unit ball in C2.
Equivalently, one has |uk − wk| ≥ α over Bgk

(x, c) for some constant c. Multi-
plying by µi

k, one therefore gets that, over Bgk
(x, c),

∣

∣

∣

∣

∣

(

∂
(

h1k − w11
k

z1ks
ref
k,x

s0k
− w12

k

z2ks
ref
k,x

s0k

)

, ∂
(

h2k − w21
k

z1ks
ref
k,x

s0k
− w22

k

z2ks
ref
k,x

s0k

)

)
∣

∣

∣

∣

∣

≥ α

C

where C is a fixed constant determined by the bounds on µi
k. In other terms, letting

(τ 0k,x, τ
1
k,x, τ

2
k,x) = (0,−(w11

k z
1
k + w12

k z
2
k)s

ref
k,x,−(w21

k z
1
k + w22

k z
2
k)s

ref
k,x),

and defining h̃k similarly to hk starting with sk + τk,x instead of sk, the above

formula can be rewritten as |∂h̃k| ≥ α
C
. Therefore, one has managed to make |∂h̃k|

larger than η = α
C

over Bgk
(x, c) by adding to sk the perturbation τk,x. Moreover,

|τk,x| ≤
∑ |wij

k |.|ziksrefk,x| ≤ δ, and the sections ziks
ref
k,x have uniform Gaussian decay

away from x.
As remarked above, setting f̃k = P(sk + τk,x), the bound |∂h̃k| ≥ η implies

that |∂f̃k| is larger than some η′ differing from η by at most a constant factor. The
assumptions of Proposition 3 are therefore satisfied, since one has η ′ ≥ c′δ log(δ−1)−p

for a suitable constant c′ > 0. Moreover, the whole argument also applies to one-
parameter families of sections st,k as well (considering one-parameter families of
coordinate charts, reference sections sreft,k,x, and constants wt,k). So Proposition 3
applies. This ends the proof of Proposition 4.

2.3. Proof of Proposition 2. The proof of Proposition 2 goes along the same
lines as that of the local transversality result introduced in [D1] and extended to
one-parameter families in [A1] (see Proposition 6 below). To start with, notice
that it is sufficient to prove the result in the case where m = n + 1. Indeed, given
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a map f = (f 1, . . . , fm) : B+ → Cm with m > n + 1 satisfying the hypotheses
of Proposition 2, one can define f ′ = (f 1, . . . , fn+1) : B+ → Cn+1, and notice
that f ′ also satisfies the required bounds. Therefore, if it is possible to find w′ =
(w1, . . . , wn+1) ∈ Cn+1 of norm at most δ such that |f ′ − w′| ≥ η over the unit
ball B, then setting w = (w1, . . . , wn+1, 0, . . . , 0) ∈ Cm one gets |w| = |w′| ≤ δ and
|f − w| ≥ |f ′ − w′| ≥ η at all points of B, which is the desired result. The same
argument applies to one-parameter families (ft)t∈[0,1].

So we are now reduced to the case m = n + 1. Let us start with the case of a
single map f , before moving on to the case of one-parameter families. The first step
in the proof is to replace f by a complex polynomial g approximating f . For this,
one approximates each of the n+1 components f i by a polynomial gi, in such a way
that g differs from f by at most a fixed multiple of η over the unit ball B and that
the degree d of g is less than a constant times log(η−1). The process is the same as
the one described in [D1] for asymptotically holomorphic maps to C, so we skip the
details. To obtain polynomial functions, one first constructs holomorphic functions
f̃ i differing from f i by at most a fixed multiple of η, using the given bounds on ∂̄f i.
The polynomials gi are then obtained by truncating the Taylor series expansion of
f̃ i to a given degree. It can be shown that by this method one can obtain polynomial
functions gi of degree less than a constant times log(η−1) and differing from f̃ i by
at most a constant times η (see Lemmas 27 and 28 of [D1]). The approximation
process does not hold on the whole ball where f is defined ; this is why one needs
f to be defined on B+ to get a result over the slightly smaller ball B.

Therefore, we now have a polynomial map g of degree d = O(log(η−1)) such
that |f − g| ≤ c η for some constant c. In particular, if one finds w ∈ Cn+1 with
|w| ≤ δ such that |g−w| ≥ (c+1)η over the ball B, then it follows immediately that
|f −w| ≥ η everywhere, which is the desired result. The key observation for finding
such a w is that the image g(B) ⊂ Cn+1 is contained in an algebraic hypersurface H
in Cn+1 of degree at most D = (n+1)dn. Indeed, if such were not the case, then for
every nonzero polynomial P of degree at most D in n+1 variables, P (g1, . . . , gn+1)
would be a non identically zero polynomial function of degree at most dD in n
variables ; since the space of polynomials of degree at most D in n + 1 variables
is of dimension

(

D+n+1
n+1

)

while the space of polynomials of degree at most dD in n

variables is of dimension
(

dD+n
n

)

, the injectivity of the map P 7→ P (g1, . . . , gn+1)

from the first space to the second would imply that
(

D+n+1
n+1

)

≤
(

dD+n
n

)

. However
since D = (n+ 1)dn one has
(

D+n+1
n+1

)

(

dD+n
n

) =
(n+ 1)dn + (n+ 1)

n+ 1
· D + n

dD + n
· · · D + 1

dD + 1
≥ (dn + 1) ·

(

1

d

)n

> 1,

which gives a contradiction. So g(B) ⊂ H for a certain hypersurface H ⊂ Cn+1 of
degree at most D = (n+ 1)dn. Therefore the following classical result of algebraic
geometry (see e.g. [Gri], pp. 11–15) can be used to provide control on the size of
H inside any ball in Cn+1 :

Lemma 4. Let H ⊂ Cn+1 be a complex algebraic hypersurface of degree D. Then,
given any r > 0 and any x ∈ Cn+1, the 2n-dimensional volume of H ∩B(x, r) is at
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most DV0 r
2n, where V0 is the volume of the unit ball of dimension 2n. Moreover,

if x ∈ H, then one also has vol2n(H ∩B(x, r)) ≥ V0 r
2n.

In particular, we are interested in the intersection of H with the ball B̂ of radius
δ centered at the origin. Lemma 4 implies that the volume of this intersection is
bounded by (n + 1)V0 d

nδ2n. Cover B̂ by a finite number of balls B(xi, η), in such
a way that no point is contained in more than a fixed constant number (depending
only on n) of the balls B(xi, 2η). Then, for every i such that B(xi, η) ∩H is non-
empty, B(xi, 2η) contains a ball of radius η centered at a point of H, so by Lemma
4 the volume of B(xi, 2η) ∩ H is at least V0 η

2n. Summing the volumes of these

intersections and comparing with the total volume of H ∩ B̂, one gets that the
number of balls B(xi, η) which meet H is bounded by N = Cdnδ2nη−2n, where C

is a constant depending only on n. Therefore, H ∩ B̂ is contained in the union of
N balls of radius η.

Since our goal is to find w ∈ B̂ at distance more than (c + 1)η of g(B) ⊂ H,
the set Z of values which we want to avoid is contained in a set Z+ which is the
union of N = Cdnδ2nη−2n balls of radius (c + 2)η. The volume of Z+ is bounded
by C ′dnδ2nη2 for some constant C ′ depending only on n. Therefore, there exists a
constant C ′′ such that, if one assumes δ to be larger than C ′′dn/2η, the volume of
B̂ is strictly larger than that of Z+, and so B̂ − Z+ is not empty. Calling w any
element of B̂ − Z+, one has |w| ≤ δ, and |g − w| ≥ (c + 1)η at every point of B,
and therefore |f − w| ≥ η at every point of B, which is the desired result.

Since d is bounded by a constant times log(η−1), it is not hard to see that there
exists an integer p such that, for all 0 < δ < 1

2
, the relation η = δ log(δ−1)−p implies

that δ > C ′′dn/2η. This is the value of p which we choose in the statement of the
proposition, thus ensuring that B̂−Z+ is not empty and therefore that there exists
w with |w| ≤ δ such that |f − w| ≥ η at every point of B.

We now consider the case of a one-parameter family of functions (ft)t∈[0,1]. The
first part of the above argument also applies to this case, so there exist polynomial
maps gt of degree d = O(log(η−1)), depending continuously on t, such that |ft−gt| ≤
c η for some constant c and for all t. In particular, if one finds wt ∈ Cn+1 with
|wt| ≤ δ and depending continuously on t such that |gt−wt| ≥ (c+1)η over the ball
B, then it follows immediately that |ft − wt| ≥ η everywhere, which is the desired
result.

As before, gt(B) is contained in a hypersurface of degree at most (n + 1)dn in
Cn+1, and the same argument as above implies that the set Zt of values which we
want to avoid for wt (i.e. all the points of B̂ at distance less than (c + 1)η from
gt(B)) is contained in a set Z+

t which is the union of N = Cdnδ2nη−2n balls of radius
(c+2)η. The rest of the proof is now a higher-dimensional analogue of the argument

used in [A1] : the crucial point is to show that, if δ is large enough, B̂ − Z+
t splits

into several small connected components and only one large component, because the
boundary Yt = ∂Z+

t is much smaller than a (2n+ 1)-ball of radius δ and therefore

cannot split B̂ into components of comparable sizes.



2. NOWHERE VANISHING SECTIONS 45

Each component of B̂ − Z+
t is delimited by a subset of the sphere ∂B̂ and by a

union of components of Yt. Each component Yt,i of Yt is a real hypersurface in B̂
(with corners at the points where the boundaries of the various balls of Z+

t intersect)

whose boundary is contained in ∂B̂, and therefore splits B̂ into two components
C ′i and C

′′
i . So each component of B̂ − Z+

t is an intersection of components C ′i or
C ′′i where i ranges over a certain subset of the set of components of Yt. Let us now
state the following isoperimetric inequality :

Lemma 5. Let Y be a connected (singular) submanifold of real codimension 1
in the unit ball of dimension 2n + 2, with (possibly empty) boundary contained in
the boundary of the ball. Let A be the (2n + 1)-dimensional area of Y . Then the
volume V of the smallest of the two components delimited by Y in the ball satisfies
the bound V ≤ K A(2n+2)/(2n+1), where K is a fixed constant depending only on the
dimension.

Proof. The stereographic projection maps the unit ball quasi-isometrically
onto a half-sphere. Therefore, up to a change in the constant, it is sufficient to
prove the result on the half-sphere. By doubling Y along its intersection with the
boundary of the half-sphere, which doubles both the volume delimited by Y and
its area, one reduces to the case of a closed connected (singular) real hypersurface
in the sphere S2n+2 (if Y does not meet the boundary, then it is not necessary to
consider the double). Next, one notices that the singular hypersurfaces we consider
can be smoothed in such a way that the area of Y and the volume it delimits are
changed by less than any fixed constant ; therefore, Lemma 5 follows from the
classical spherical isoperimetric inequality (see e.g. [Sch]). ¤

It follows that, letting Ai be the (2n + 1)-dimensional area of Yt,i, the smallest

of the two components delimited by Yt,i, e.g. C
′
i, has volume Vi ≤ K A

(2n+2)/(2n+1)
i .

Therefore, the volume of the set
⋃

iC
′
i is bounded by K

∑

iA
(2n+2)/(2n+1)
i , which is

less than K (
∑

iAi)
(2n+2)/(2n+1). However,

∑

iAi is the total area of the boundary
Yt of Z

+
t , so it is less than the total area of the boundaries of the balls composing

Z+
t , which is at most a fixed constant times Cdnδ2nη−2n((c+ 2)η)2n+1, i.e. at most

a fixed constant times dnδ2nη. Therefore, one has

vol(
⋃

i

C ′i) ≤ K ′
(

dn
η

δ

)
2n+2
2n+1

δ2n+2

for some constant K ′ depending only on n. So there exists a constant K ′′ depending
only on n such that, if δ > K ′′dnη, then vol(

⋃

iC
′
i) ≤ 1

10
vol(B̂), and therefore

vol(
⋂

iC
′′
i ) ≥ 8

10
vol(B̂).

Since d is bounded by a constant times log(η−1), it is not hard to see that there
exists an integer p such that, for all 0 < δ < 1

2
, the relation η = δ log(δ−1)−p implies

that δ > K ′′dnη. This is the value of p which we choose in the statement of the
proposition, thus ensuring that the above volume bounds on

⋃

iC
′
i and

⋂

iC
′′
i hold.

Now, recall that every component of B̂−Z+
t is an intersection of sets C ′i and C

′′
i

for certain values of i. Therefore, every component of B̂−Z+
t either is contained in
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⋃

iC
′
i or contains

⋂

iC
′′
i . However, because

⋃

iC
′
i is much smaller than the ball B̂,

one cannot have B̂ − Z+
t ⊂

⋃

iC
′
i. Therefore, there exists a component in B̂ − Z+

t

containing
⋃

iC
′′
i . Since its volume is at least 8

10
vol(B̂), this large component is

necessarily unique.

Let U(t) be the connected component of B̂−Zt which contains the large compo-

nent of B̂−Z+
t : it is the only large component of B̂−Zt. We now follow the same

argument as in [A1]. Since gt(B) depends continuously on t, so does its (c + 1)η-

neighborhood Zt, and the set
⋃

t{t} × Zt is therefore a closed subset of [0, 1] × B̂.

Let U−(t, ε) be the set of all points of U(t) at distance more than ε from Zt ∪ ∂B̂.
Then, given any t and any small ε > 0, for all τ close to t, U(τ) contains U−(t, ε).
To see this, we first notice that, for all τ close to t, U−(t, ε) ∩ Zτ = ∅. Indeed,
if such were not the case, one could take a sequence of points of Zτ ∩ U−(t, ε) for

τ → t, and extract a convergent subsequence whose limit belongs to U
−
(t, ε) and

therefore lies outside of Zt, in contradiction with the fact that
⋃

t{t}×Zt is closed.

So U−(t, ε) ⊂ B̂ − Zτ for all τ close enough to t. Making ε smaller if necessary,
one may assume that U−(t, ε) is connected, so that for all τ close to t, U−(t, ε) is

necessarily contained in the large component of B̂ − Zτ , namely U(τ).

It follows that U =
⋃

t{t} × U(t) is an open connected subset of [0, 1]× B̂, and
is therefore path-connected. So we get a path s 7→ (t(s), w(s)) joining (0, w(0)) to
(1, w(1)) inside U , for any given w(0) and w(1) in U(0) and U(1). We then only
have to make sure that s 7→ t(s) is strictly increasing in order to define wt(s) = w(s).

Getting the t component to increase strictly is not hard. Indeed, one first gets
it to be weakly increasing, by considering values s1 < s2 of the parameter such that
t(s1) = t(s2) = t and replacing the portion of the path between s1 and s2 by a path
joining w(s1) to w(s2) in the connected set U(t). Then, we slightly shift the path,
using the fact that U is open, to get the t component to increase slightly over the
parts where it was constant. Thus we can define wt(s) = w(s) and end the proof of
Proposition 2.

3. Transversality of derivatives

3.1. Transversality to 0 of Jac(fk). At this point in the proofs of Theorems
1 and 2, we have constructed for all large k asymptotically holomorphic sections
sk of C3 ⊗ Lk (or families of sections), bounded away from 0, and such that the
holomorphic derivative of the map fk = Psk is bounded away from 0. The next
property we wish to ensure by perturbing the sections sk is the transversality to 0
of the (2, 0)-Jacobian Jac(fk) = det(∂fk). The main result of this section is :

Proposition 5. Let δ and γ be two constants such that 0 < δ < γ
4
, and let

(sk)kÀ0 be asymptotically holomorphic sections of C3 ⊗ Lk such that |sk| ≥ γ and
|∂(Psk)|gk

≥ γ at every point of X. Then there exists a constant η > 0 such that,
for all large enough values of k, there exist asymptotically holomorphic sections σk

of C3⊗Lk such that |σk−sk|C3,gk
≤ δ and Jac(Pσk) is η-transverse to 0. Moreover,

the same statement holds for families of sections indexed by a parameter t ∈ [0, 1].
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The proof of Proposition 5 uses once more the same techniques and globaliza-
tion argument as Propositions 1 and 4. The local transversality result one uses in
conjunction with Proposition 3 is now the following statement for complex valued
functions :

Proposition 6 ([D1],[A1]). Let f be a function defined over the ball B+ of
radius 11

10
in Cn with values in C. Let δ be a constant such that 0 < δ < 1

2
, and let

η = δ log(δ−1)−p where p is a suitable fixed integer depending only on the dimension
n. Assume that f satisfies the following bounds over B+ :

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then there exists w ∈ C, with |w| ≤ δ, such that f − w is η-transverse to 0 over
the interior ball B of radius 1, i.e. f − w has derivative larger than η at any point
of B where |f − w| < η.

Moreover, the same statement remains true for a one-parameter family of func-
tions (ft)t∈[0,1] satisfying the same bounds, i.e. for all t one can find elements wt ∈ C
depending continuously on t such that |wt| ≤ δ and ft−wt is η-transverse to 0 over
B.

The first part of this statement is exactly Theorem 20 of [D1], and the version
for one-parameter families is Proposition 3 of [A1].

Proposition 5 is proved by applying Proposition 3 to the following property : say
that a section s of C3⊗Lk everywhere larger than γ

2
and such that |∂Ps| ≥ γ

2
every-

where satisfies P(η, x) if Jac(Ps) is η-transverse to 0 at x, i.e. either |Jac(Ps)(x)| ≥ η
or |∇Jac(Ps)(x)| > η. This property is local and C2-open, and therefore also C3-
open, because the lower bound on s makes Jac(Ps) depend nicely on s. Note that,
since one considers only sections differing from sk by less than δ in C3 norm, de-
creasing δ if necessary, one can safely assume that the two hypotheses |s| ≥ γ

2
and

|∂(Ps)| ≥ γ
2
are satisfied everywhere by all the sections appearing in the construc-

tion of σk. So one only needs to check that the assumptions of Proposition 3 hold
for the property P defined above.

Therefore, let x ∈ X, 0 < δ < γ
4
, and consider asymptotically holomorphic

sections sk of C3⊗Lk and the corresponding maps fk = Psk, such that |sk| ≥ γ
2
and

|∂fk| ≥ γ
2
everywhere. The setup is similar to that of Section 2.2. Without loss of

generality, composing with a rotation in C3 (constant over X), one can assume that
sk(x) is directed along the first component in C3, i.e. that s1k(x) = s2k(x) = 0 and
therefore |s0k(x)| ≥ γ

2
. Because of the uniform bound on |∇sk|, there exists r > 0

(independent of k) such that |s0k| ≥ γ
3
, |s1k| < γ

3
and |s2k| < γ

3
over the ball Bgk

(x, r).
Therefore, over this ball one can define the map

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.

Note that fk is the composition of hk with the map ι : (z1, z2) 7→ [1 : z1 : z2] from
C2 to CP2, which is a quasi-isometry over the unit ball in C2. Therefore, at any point
y ∈ Bgk

(x, r), the bound |∂fk(y)| ≥ γ
2
implies that |∂hk(y)| ≥ γ ′ for some constant

γ′ > 0. Moreover, the (2, 0)-Jacobians Jac(fk) = det(∂fk) and Jac(hk) = det(∂hk)
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are related to each other : Jac(fk)(y) = φ(y) Jac(hk)(y), where φ(y) is the Jacobian
of ι at hk(y). In particular, |φ| is bounded between two universal constants over
Bgk

(x, r), and ∇φ is also bounded.
Since ∇Jac(hk) = φ−1∇Jac(fk)− φ−2Jac(fk)∇φ, it follows from the bounds on

φ that, if Jac(fk) fails to be α-transverse to 0 at y for some α, i.e. if |Jac(fk)(y)| < α
and |∇Jac(fk)(y)| ≤ α, then |Jac(hk)(y)| < Cα and |∇Jac(hk)(y)| ≤ Cα for some
constant C independent of k and α. This means that, if Jac(hk) is Cα-transverse
to 0 at y, then Jac(fk) is α-transverse to 0 at y. Therefore, what one actually
needs to prove is that, for large enough k, a perturbation of sk with Gaussian
decay and smaller than δ allows one to obtain the η-transversality to 0 of Jac(hk)
over a ball Bgk

(x, c), with η = c′δ (log δ−1)−p, for some constants c, c′ and p ; the
η
C
-transversality to 0 of Jac(fk) then follows by the above remark.

Since |∂hk(x)| ≥ γ ′, one can assume, after composing with a rotation in C2 (con-
stant over X) acting on the two components (s1k, s

2
k) or equivalently on (h1k, h

2
k),

that |∂h2k(x)| ≥ γ′

2
. As in Section 2.2, consider the asymptotically holomorphic

sections srefk,x of Lk with Gaussian decay away from x given by Lemma 2, and the

complex coordinate functions z1k and z2k of a local approximately holomorphic Dar-
boux coordinate chart on a neighborhood of x. Recall that the two asymptotically
holomorphic 1-forms

µ1k = ∂
(z1ks

ref
k,x

s0k

)

and µ2k = ∂
(z2ks

ref
k,x

s0k

)

are, at x, both of norm larger than a fixed constant and mutually orthogonal, and
that µ1k, µ

2
k and their derivatives are uniformly bounded independently of k.

Because µ1k(x) and µ2k(x) define an orthogonal frame in Λ1,0T ∗xX, there exist
complex numbers ak and bk such that ∂h2k(x) = akµ

1
k(x) + bkµ

2
k(x). Let λk,x =

(b̄kz
1
k − ākz

2
k)s

ref
k,x. The properties of λk,x of importance to us are the following :

the sections λk,x are asymptotically holomorphic because the coordinates zik are
asymptotically holomorphic ; they are uniformly bounded in C3 norm by a constant
C0, because of the bounds on srefk,x, on the coordinate chart and on ∂h2k(x) ; they
have uniform Gaussian decay away from x ; and, letting

Θk,x = ∂
(λk,x

s0k

)

∧ ∂h2k,

one has |Θk,x(x)| = |(b̄kµ1k(x) − ākµ
2
k(x)) ∧ (akµ

1
k(x) + bkµ

2
k(x))| ≥ γ ′′ for some

constant γ ′′ > 0, because of the lower bounds on |µi
k(x)| and |∂h2k(x)|.

Because ∇Θk,x is uniformly bounded and |Θk,x(x)| ≥ γ ′′, there exists a constant

r′ > 0 independent of k such that |Θk,x| remains larger than γ′′

2
over the ball

Bgk
(x, r′). Define on Bgk

(x, r′) the function uk = Θ−1k,xJac(hk) with values in C :
because Θk,x is bounded from above and below and has bounded derivative, the
transversality to 0 of uk is equivalent to that of Jac(hk). Moreover, for any wk ∈ C,
adding wkλk,x to s1k is equivalent to adding wkΘk,x to Jac(hk) = ∂h1k ∧ ∂h2k, i.e.
adding wk to uk. Therefore, to prove Proposition 5 we only need to find wk ∈ C
with |wk| ≤ δ

C0
such that the functions uk − wk are transverse to 0.
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Using the local approximately holomorphic coordinate chart, one can obtain
from uk, after composing with a fixed dilation of C2 if necessary, functions vk defined
on the ball B+ ⊂ C2, with values in C, and satisfying the estimates |vk| = O(1),
|∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2). One can then apply Proposition 6,
provided that k is large enough, to obtain constants wk ∈ C, with |wk| ≤ δ

C0
, such

that vk−wk is α-transverse to 0 over the unit ball in C2, where α = δ
C0

log(( δ
C0
)−1)−p.

Therefore, uk −wk is α
C′ -transverse to 0 over Bgk

(x, c) for some constants c and C ′.
Multiplying by Θk,x, one finally gets that, over Bgk

(x, c), Jac(hk) − wkΘk,x is η-
transverse to 0, where η = α

C′′ for some constant C ′′.

In other terms, let (τ 0k,x, τ
1
k,x, τ

2
k,x) = (0,−wkλk,x, 0), and define h̃k similarly to hk

starting with sk + τk,x instead of sk : then the above discussion shows that Jac(h̃k)
is η-transverse to 0 over Bgk

(x, c). Moreover, |τk,x|C3 = |wk| |λk,x|C3 ≤ δ, and the
sections τk,x have uniform Gaussian decay away from x. As remarked above, the
η-transversality to 0 of Jac(h̃k) implies that Jac(P(sk + τk,x)) is η′-transverse to
0 for some η′ differing from η by at most a constant factor. The assumptions of
Proposition 3 are therefore satisfied, since η′ ≥ c′δ log(δ−1)−p for a suitable constant
c′ > 0.

Moreover, the whole argument also applies to one-parameter families of sections
st,k as well. The only nontrivial point to check, in order to apply the above con-
struction for each t ∈ [0, 1] in such a way that everything depends continuously
on t, is the existence of a continuous family of rotations of C2 acting on (h1k, h

2
k)

allowing one to assume that |∂h2t,k(x)| > γ′

2
for all t. For this, observe that, for every

t, such rotations in SU(2) are in one-to-one correspondence with pairs (α, β) ∈ C2

such that |α|2 + |β|2 = 1 and |α ∂h1t,k(x) + β ∂h2t,k(x)| > γ′

2
. The set Γt of such pairs

(α, β) is non-empty because |∂ht,k(x)| ≥ γ ′ ; let us now prove that it is connected.
First, notice that Γt is invariant under the diagonal S1 action on C2. Therefore,

it is sufficient to prove that the set of (α : β) ∈ CP1 such that

φ(α : β) :=
|α ∂h1t,k(x) + β ∂h2t,k(x)|2

|α|2 + |β|2 >
(γ′)2

4

is connected. For this, consider a critical point of φ over CP1. Composing with a
rotation in CP1, one may assume that this critical point is (1 : 0). Then it follows
from the property ∂

∂β
φ(1 : β)|β=0 = 0 that ∂h1t,k(x) and ∂h

2
t,k(x) must necessarily be

orthogonal to each other. Therefore, one has

φ(1 : β) =
|∂h1t,k(x)|2 + |β|2|∂h2t,k(x)|2

1 + |β|2 ,

and it follows that either φ is constant over CP1 (if |∂h1t,k(x)| = |∂h2t,k(x)|), or

the critical point is nondegenerate of index 0 (if |∂h1t,k(x)| < |∂h2t,k(x)|), or it is

nondegenerate of index 2 (if |∂h1t,k(x)| > |∂h2t,k(x)|). As a consequence, since φ has

no critical point of index 1, all nonempty sets of the form {(α : β) ∈ CP1, φ(α, β) >
constant} are connected.
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Lifting back from CP1 to the unit sphere in C2, it follows that Γt is connected.
Therefore, for each t the open set Γt ⊂ SU(2) of admissible rotations of C2 is con-
nected. Since ht,k depends continuously on t, the sets Γt also depend continuously
on t (with respect to nearly every conceivable topology), and therefore

⋃

t{t} × Γt

is connected. The same argument as in the end of §2.3 then implies the existence of
a continuous section of

⋃

t{t}×Γt over [0, 1], i.e. the existence of a continuous one-

parameter family of rotations of C2 which allows one to ensure that |∂h2t,k(x)| > γ′

2
for all t. Therefore, the argument described in this section also applies to the case
of one-parameter families, and the assumptions of Proposition 3 are satisfied by the
property P even in the case of one-parameter families of sections. Proposition 5
follows immediately.

3.2. Nondegeneracy of cusps. At this point in the proof, we have obtained
sections satisfying the transversality property P3(γ). The only missing property in
order to obtain η-genericity for some η > 0 is the transversality to 0 of the restriction
of T (sk) to R(sk). The main result of this section is therefore the following :

Proposition 7. Let δ and γ be two constants such that 0 < δ < γ
4
, and let

(sk)kÀ0 be asymptotically holomorphic sections of C3⊗Lk satisfying P3(γ) for all k.
Then there exists a constant η > 0 such that, for all large enough values of k, there
exist asymptotically holomorphic sections σk of C3⊗Lk such that |σk − sk|C3,gk

≤ δ
and that the restrictions to R(σk) of the sections T (σk) are η-transverse to 0 over
R(σk). Moreover, the same statement holds for families of sections indexed by a
parameter t ∈ [0, 1].

Note that, decreasing δ if necessary in the statement of Proposition 7, it is safe
to assume that all sections lying within δ of sk in C3 norm, and in particular the
sections σk, satisfy P3(

γ
2
).

There are several ways of obtaining transversality to 0 of certain sections re-
stricted to asymptotically holomorphic symplectic submanifolds : for example, one
such technique is described in the main argument of [A1]. However in our case,
the perturbations we will add to sk in order to get the transversality to 0 of T (sk)
have the side effect of moving the submanifolds R(sk) along which the transversality
conditions have to hold, which makes things slightly more complicated. Therefore,
we choose to use the equivalence between two different transversality properties :

Lemma 6. Let σk and σ′k be asymptotically holomorphic sections of vector bun-
dles Ek and E ′k respectively over X. Assume that σ′k is γ-transverse to 0 over X
for some γ > 0, and let Σ′k be its (smooth) zero set. Fix a constant r > 0 and a
point x ∈ X. Then :

(1) There exists a constant c > 0, depending only on r, γ and the bounds on the
sections, such that, if the restriction of σk to Σ′k ∩Bgk

(x, r) is η-transverse to 0 for
some η < γ, then σk ⊕ σ′k is c η-transverse to 0 at x as a section of Ek ⊕ E ′k.

(2) If σk ⊕ σ′k is η-transverse to 0 at x and x belongs to Σ′k, then the restriction
of σk to Σ′k is η-transverse to 0 at x.

Proof. We start with (1), whose proof follows the ideas of §3.6 of [A1] with
improved estimates. Let C1 be a constant bounding |∇σk| everywhere, and let
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C2 be a constant bounding |∇∇σk| and |∇∇σ′k| everywhere. Fix two constants
0 < c < c′ < 1

2
, such that the following inequalities hold : c < r, c < 1

2
γ C−11 ,

c′ < (2 + γ−1C1)
−1, and (2C2γ

−1 + 1)c < c′. Clearly, these constants depend only
on r, γ, C1 and C2.

Assume that |σk(x)| and |σ′k(x)| are both smaller than c η. Because of the γ-
transversality to 0 of σ′k and because |σ′k(x)| < c η < γ, the covariant derivative of
σ′k is surjective at x, and admits a right inverse (E ′k)x → TxX of norm less than
γ−1. Since the connection is unitary, applying this right inverse to σ ′k itself one
can follow the downward gradient flow of |σ′k|, and since one remains in the region
where |σ′k| < γ this gradient flow converges to a point y where σ ′k vanishes, at a
distance d from the starting point x no larger than γ−1c η. In particular, d < c < r,
so y ∈ Bgk

(x, r) ∩ Σ′k, and the restriction of σk to Σ′k is η-transverse to 0 at y.
Since c < 1

2
γ C−11 , the norm of σk(y) differs from that of σk(x) by at most

C1d <
η
2
, and so |σk(y)| < η. Since y ∈ Bgk

(x, r) ∩ Σ′k, we therefore know that
∇σ′k is surjective at y and vanishes in all directions tangential to Σ′k, while ∇σk

restricted to TyΣ
′
k is surjective and larger than η. It follows that ∇(σk ⊕ σ′k) is

surjective at y. Let ρ : (Ek)y → TyΣ
′
k and ρ′ : (E ′k)y → TyX be the right inverses of

∇yσk |Σ′
k
and ∇yσ

′
k given by the transversality properties of σk |Σ′

k
and σ′k. We now

construct a right inverse ρ̂ : (Ek⊕E ′k)y → TyX of ∇y(σk⊕σ′k) with bounded norm.
Considering any element u ∈ (Ek)y, the vector û = ρ(u) ∈ TyΣ

′
k has norm at

most η−1|u| and satisfies ∇σk(û) = u. Clearly ∇σ′k(û) = 0 because û is tangent to
Σ′k, so we define ρ̂(u) = û. Now consider an element v of (E ′k)y, and let v̂ = ρ′(v) : we
have |v̂| ≤ γ−1|v| and∇σ′k(v̂) = v. Let ŵ = ρ(∇σk(v̂)) : then∇σk(ŵ) = ∇σk(v̂) and
∇σ′k(ŵ) = 0, while |ŵ| ≤ η−1C1|v̂| ≤ η−1γ−1C1|v|. Therefore∇(σk⊕σ′k)(v̂−ŵ) = v,
and we define ρ̂(v) = v̂ − ŵ.

Therefore ∇(σk ⊕ σ′k) admits at y a right inverse ρ̂ of norm bounded by η−1 +
γ−1 + η−1γ−1C1 ≤ (2 + γ−1C1)η

−1 < (c′η)−1. Finally, note that ∇x(σk ⊕ σ′k) differs
from ∇y(σk⊕σ′k) by at most 2C2d < 2C2γ

−1c η < (c′− c)η. Therefore, ∇x(σk⊕σ′k)
is also surjective, and is larger than (c′η)− ((c′−c)η) = c η. In other terms, we have
shown that σk ⊕ σ′k is c η-transverse to 0 at x, which is what we sought to prove.

The proof of (2) is much easier : we know that x ∈ Σ′k, i.e. σ′k(x) = 0, and
let us assume that |σk(x)| < η. Then |σk(x) ⊕ σ′k(x)| = |σk(x)| < η, and the η-
transversality to 0 of σk ⊕ σ′k at x implies that ∇x(σk ⊕ σ′k) has a right inverse ρ̂
of norm less than η−1. Choose any u ∈ (Ek)x, and let ρ(u) = ρ̂(u ⊕ 0). One has
∇σ′k(ρ(u)) = 0, therefore ρ(u) lies in TxΣ

′
k, and ∇σk(ρ(u)) = u by construction.

So (∇σk)|TxΣ′
k
is surjective and admits ρ as a right inverse. Moreover, |ρ(u)| =

|ρ̂(u ⊕ 0)| ≤ η−1|u|, so the norm of ρ is less than η−1, which shows that σk |Σ′
k
is

η-transverse to 0 at x. ¤

It follows from assertion (2) of Lemma 6 that, in order to obtain the transver-
sality to 0 of T (σk)|R(σk), it is sufficient to make T (σk) ⊕ Jac(Pσk) transverse to 0
over a neighborhood of R(σk). Therefore, we can use once more the globalization
principle of Proposition 3 to prove Proposition 7. Indeed, consider a section s of
C3 ⊗ Lk satisfying P3(

γ
2
), a point x ∈ X and a constant η > 0, and say that s

satisfies the property P(η, x) if either x is at distance more than η of R(s), or x
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lies close to R(s) and T (s)⊕ Jac(Ps) is η-transverse to 0 at x (i.e. one of the two
quantities |(T (s)⊕Jac(Ps))(x)| and |∇(T (s)⊕Jac(Ps))(x)| is larger than η). Since
Jac(Ps)⊕T (s) is, under the assumption P3(

γ
2
), a smooth function of s and its first

two derivatives, and since R(s) depends nicely on s, it is easy to show that the
property P is local and C3-open. So one only needs to check that P satisfies the
assumptions of Proposition 3. Our next remark is :

Lemma 7. There exists a constant r′0 > 0 (independent of k) with the fol-
lowing property : choose x ∈ X and r′ < r′0, and let sk be asymptotically holo-
morphic sections of C3 ⊗ Lk satisfying P3(

γ
2
). Assume that Bgk

(x, r′) intersects
R(sk). Then there exists an approximately holomorphic map θk,x from the disc D+

of radius 11
10

in C to R(sk) such that : (i) the image by θk,x of the unit disc D

contains Bgk
(x, r′) ∩ R(sk) ; (ii) |∇θk,x|C1,gk

= O(1) and |∂̄θk,x|C1,gk
= O(k−1/2) ;

(iii) θk,x(D
+) is contained in a ball of radius O(r′) centered at x.

Moreover the same statement holds for one-parameter families of sections :
given sections (st,k)t∈[0,1] depending continuously on t, satisfying P3(

γ
2
) and such

that Bgk
(x, r′) intersects R(st,k) for all t, there exist approximately Jt-holomorphic

maps θt,k,x depending continuously on t and with the same properties as above.

Proof. We work directly with the case of one-parameter families (the result for
isolated sections follows trivially) and let jt,k = Jac(Pst,k). First note that R(st,k)
is the zero set of jt,k, which is γ

2
-transverse to 0 and has uniformly bounded second

derivative. So, given any point y ∈ R(st,k), |∇jt,k(y)| > γ
2
, and therefore there

exists c > 0, depending only on γ and the bound on ∇∇jt,k, such that ∇jt,k varies
by a factor of at most 1

10
in the ball of radius c centered at y. It follows that

Bgk
(y, c) ∩ R(st,k) is diffeomorphic to a ball (in other words, R(st,k) is “trivial at

small scale”).
Assume first that 3r′ < c. For all t, choose a point yt,k (not necessarily depending

continuously on t) in Bgk
(x, r′)∩R(st,k) 6= ∅. The intersection Bgk

(yt,k, 3r
′)∩R(st,k)

is diffeomorphic to a ball and therefore connected, and contains Bgk
(x, r′)∩R(st,k)

which is nonempty and depends continuously on t. Therefore, the set
⋃

t{t} ×
Bgk

(yt,k, 3r
′) ∩ R(st,k) is connected, which implies the existence of points xt,k ∈

Bgk
(yt,k, 3r

′) ∩R(st,k) ⊂ Bgk
(x, 4r′) ∩R(st,k) which depend continuously on t.

Consider local approximately Jt-holomorphic coordinate charts over a neigh-
borhood of xt,k, depending continuously on t, as given by Lemma 3, and call
ψt,k : (C2, 0) → (X, xt,k) the inverse of the coordinate map. Because of asymp-
totic holomorphicity, the tangent space to R(st,k) at xt,k lies within O(k−1/2) of the

complex subspace T̃xt,k
R(st,k) = Ker ∂jt,k(xt,k) of Txt,k

X. Composing ψt,k with a
rotation in C2, one can get maps ψ′t,k satisfying the same bounds as ψt,k and such

that the differential of ψ′t,k at 0 maps C× {0} to T̃xt,k
R(st,k).

The estimates of Lemma 3 imply that there exists a constant λ = O(r′) such

that ψ′t,k(BC2(0, λ)) ⊃ Bgk
(x, r′). Define ψ̃t,k(z) = ψ′t,k(λz) : if r′ is sufficiently

small, this map is well-defined over the ball BC2(0, 2). Over BC2(0, 2) the estimates

of Lemma 3 imply that |∂̄ψ̃t,k|C1,gk
= O(λk−1/2) and |∇ψ̃t,k|C1,gk

= O(λ). Moreover,
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because λ = O(r′) the image by ψ̃t,k of BC2(0, 2) is contained in a ball of radius
O(r′) around x.

Assuming r′ to be sufficiently small, one can also require that the image of
BC2(0, 2) by ψ̃t,k has diameter less than c. The submanifolds R(st,k) are then trivial
over the considered balls, so it follows from the implicit function theorem that
R(st,k) ∩ ψ̃t,k(D

+ ×D+) can be parametrized in the chosen coordinates as the set

of points of the form ψ̃t,k(z, τt,k(z)) for z ∈ D+, where τt,k : D+ → D+ satisfies
τt,k(0) = 0 and ∇τt,k(0) = O(k−1/2).

The derivatives of τt,k can be easily computed, since they are characterized by

the equation jt,k(ψ̃t,k(z, τt,k(z))) = 0. Notice that, if r′ is small enough, it follows

from the transversality to 0 of jt,k that |∇jt,k ◦ dψ̃t,k(v)| is larger than a constant
times λ|v| for all v ∈ {0}×C and at any point of D+×D+. Combining this estimate
with the bounds on the derivatives of jt,k given by asymptotic holomorphicity and

the above bounds on the derivatives of ψ̃t,k, one gets that |∇τt,k|C1 = O(1) and
|∂̄τt,k|C1 = O(k−1/2) over D+.

One then defines θt,k(z) = ψ̃t,k(z, τt,k(z)) over D
+, which satisfies all the required

properties : the image θt,k(D
+) is contained in R(st,k) and in a ball of radius O(r′)

centered at x ; θt,k(D) contains the intersection of R(st,k) with ψ̃t,k(D × D+) ⊃
ψ′t,k(BC2(0, λ)) ⊃ Bgk

(x, r′) ; and the required bounds on derivatives follow directly

from those on derivatives of τt,k and ψ̃t,k. Therefore, Lemma 7 is proved under the
assumption that r′ is small enough. We set r′0 in the statement of the lemma to
be the bound on r′ which ensures that all the assumptions we have made on r′ are
satisfied. ¤

We now prove that the assumptions of Proposition 3 hold for property P in the
case of single sections sk (the case of one-parameter families is discussed later). Let
x ∈ X, 0 < δ < γ

4
, and consider asymptotically holomorphic sections sk of C3 ⊗ Lk

satisfying P3(
γ
2
) and the corresponding maps fk = Psk. We have to show that, for

large enough k, a perturbation of sk with Gaussian decay and smaller than δ in C3

norm can make property P hold over a ball centered at x. Because of assertion (1)
of Lemma 6, it is actually sufficient to show that there exist constants c, c′ and p
independent of k and δ such that, if x lies within distance c of R(sk), then sk can
be perturbed to make the restriction of T (sk) to R(sk) η-transverse to 0 over the
intersection of R(sk) with a ball Bgk

(x, c), where η = c′δ (log δ−1)−p. Such a result
is then sufficient to imply the transversality to 0 of T (sk) ⊕ Jac(fk) over the ball
Bgk

(x, c
2
), with a transversality constant decreased by a bounded factor.

As in previous sections, composing with a rotation in C3 (constant over X),
one can assume that sk(x) is directed along the first component in C3, i.e. that
s1k(x) = s2k(x) = 0 and therefore |s0k(x)| ≥ γ

2
. Because of the uniform bound on

|∇sk|, there exists r > 0 (independent of k) such that |s0k| ≥ γ
3
, |s1k| < γ

3
and

|s2k| < γ
3
over the ball Bgk

(x, r). Therefore, over this ball one can define the map

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.
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The map fk is the composition of hk with the map ι : (z1, z2) 7→ [1 : z1 : z2]
from C2 to CP2, which is a quasi-isometry over the unit ball in C2. Therefore, at
any point y ∈ Bgk

(x, r), the bound |∂fk(y)| ≥ γ
2
implies that |∂hk(y)| ≥ γ ′ for some

constant γ ′ > 0. Moreover, one has Jac(fk) = φ Jac(hk), where φ(y) is the Jacobian
of ι at hk(y). In particular, Jac(hk) vanishes at exactly the same points of Bgk

(x, r)
as Jac(fk). Since |φ| is bounded between two universal constants over Bgk

(x, r)
and ∇φ is bounded too, it follows from the γ

2
-transversality to 0 of Jac(fk) that,

decreasing γ ′ if necessary, Jac(hk) is γ
′-transverse to 0 over Bgk

(x, r).
Since |∂hk(x)| ≥ γ ′, after composing with a rotation in C2 (constant over X)

acting on the two components (s1k, s
2
k) one can assume that |∂h2k(x)| ≥ γ′

2
. Since

∇∇hk is uniformly bounded, decreasing r if necessary one can ensure that |∂h2k|
remains larger than γ′

4
at every point of Bgk

(x, r).

Let us now show that, over R̂x(sk) = Bgk
(x, r) ∩ R(sk), the transversality to 0

of T (sk) follows from that of T̂ (sk) = ∂h2k ∧ ∂Jac(hk).
It follows from the identity Jac(fk) = φ Jac(hk) and the vanishing of Jac(hk)

over R̂x(sk) that ∂Jac(fk) = φ ∂Jac(hk) over R̂x(sk). Moreover the two (1, 0)-forms

∂fk and ∂hk have complex rank one at any point of R̂x(sk) and are related by
∂fk = dι(∂hk), so they have the same kernel (in some sense they are “colinear”).
Because |∂h2k| is bounded from below over Bgk

(x, r), the ratio between |∂hk| and
|∂h2k| is bounded. Because the line bundle L(sk) on which one projects ∂fk coincides
with Im ∂fk over R(sk), we have |π(∂fk)| = |∂fk| over R(sk). Since ι is a quasi-
isometry over the unit ball, it follows that the ratio between |π(∂fk)| and |∂h2k|
is bounded from above and below over R̂x(sk). Moreover, the two 1-forms π(∂fk)

and ∂h2k have same kernel, so one can write π(∂fk) = ψ ∂h2k over R̂x(sk), with ψ
bounded from above and below. Because of the uniform bounds on derivatives of sk
and therefore fk and hk, it is easy to check that the derivatives of ψ are bounded.

So T (sk) = φψ T̂ (sk) over R̂x(sk). Therefore, assume that T̂ (sk)|R(sk) is η-

transverse to 0 at a given point y ∈ R̂x(sk), and let C > 1 be a constant such

that 1
C
< |φψ| < C and |∇(φψ)| < C over R̂x(sk). If |T (sk)(y)| < η

2C3 , then

|T̂ (sk)(y)| < η
2C2 < η, and therefore |∂(T̂ (sk))(y)| > η, so at y one has |∂(T (sk))| ≥

|φψ ∂(T̂ (sk))| − |T̂ (sk)∂(φψ)| > 1
C
η − η

2C2C = η
2C

> η
2C3 . In other terms, the

restriction to R(sk) of T (sk) is η
2C3 -transverse to 0 at y.

Therefore, we only need to show that there exists a constant c > 0 such that, if
Bgk

(x, c)∩R(sk) 6= ∅, then by perturbing sk it is possible to ensure that T̂ (sk)|R(sk)

is transverse to 0 over Bgk
(x, c) ∩R(sk).

By Lemma 7, given any sufficiently small constant c > 0 and assuming that
Bgk

(x, c) ∩ R(sk) 6= ∅, there exists an approximately holomorphic map θk from
D+ to R(sk) such that θk(D) contains Bgk

(x, c) ∩ R(sk) and satisfying bounds
|∇θk|C1,gk

= O(1) and |∂̄θk|C1,gk
= O(k−1/2). We call c̄ = O(c) the size of the ball

such that θk(D
+) ⊂ Bgk

(x, c̄), and assume that c is small enough to have c̄ < r.
From now on, we assume that Bgk

(x, c) ∩R(sk) 6= ∅.
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Let srefk,x be the asymptotically holomorphic sections of Lk with Gaussian decay

away from x given by Lemma 2, and let z1k and z2k be the complex coordinate
functions of a local approximately holomorphic Darboux coordinate chart on a
neighborhood of x. There exist two complex numbers a and b such that ∂h2k(x) =
a ∂z1k(x) + b ∂z2k(x). Composing the coordinate chart (z1k, z

2
k) with the rotation

1

|a|2 + |b2|

(

b̄ −ā
a b

)

,

we can actually write ∂h2k(x) = λ ∂z2k(x), with |λ| bounded from below indepen-
dently of k and x. We now define Qk,x =

(

0, (z1k)
2srefk,x, 0

)

and study the behavior of

T̂ (sk + wQk,x) for small w ∈ C.

First we look at how adding wQk,x to sk affects the submanifold R(sk) : for
small enough w, R(sk + wQk,x) is a small deformation of R(sk) and can therefore
be seen as a section of TX|R(sk). Because the derivative of Jac(hk) is uniformly
bounded and Bgk

(x, c) ∩ R(sk) is not empty, if c is small enough then |Jac(hk)|
remains less than γ ′ over Bgk

(x, c̄). Recall that Jac(hk) is γ′-transverse to 0 over
Bgk

(x, r) : therefore, at every point y ∈ Bgk
(x, c̄), ∇Jac(hk) admits a right inverse

ρ : Λ2,0T ∗yX → TyX of norm less than 1
γ′ . Adding wQk,x to sk increases Jac(hk) by

w∆k,x, where

∆k,x = ∂
((z1k)

2srefk,x

s0k

)

∧ ∂h2k.

Therefore, R(sk + wQk,x) is obtained by shifting R(sk) by an amount equal to

−ρ(w∆k,x) + O(|w∆k,x|2). It follows that the value of T̂ (sk + wQk,x) at a point of

R(sk + wQk,x) differs from the value of T̂ (sk) at the corresponding point of R(sk)
by an amount

Θk,x(w) = w ∂h2k ∧ ∂∆k,x −∇(T̂ (sk)).ρ(w∆k,x) +O(w2).

Our aim is therefore to show that, if c is small enough, for a suitable value of w the
quantity T̂ (sk) + Θk,x(w) is transverse to 0 over R(sk) ∩Bgk

(x, c).

Notice that the quantities T̂ (sk) and Jac(hk) are asymptotically holomorphic,

so that ∇(T̂ (sk)) and ρ are approximately complex linear. Therefore,

∇(T̂ (sk)).ρ(w∆k,x) = w∇(T̂ (sk)).ρ(∆k,x) +O(k−1/2).

It follows that Θk,x(w) = wΘ0
k,x +O(w2) +O(k−1/2), where

Θ0
k,x = ∂h2k ∧ ∂∆k,x −∇(T̂ (sk)).ρ(∆k,x).

We start by computing the value of Θ0
k,x at x, using the fact that ∂h2k(x) =

λ ∂z2k(x) while z
1
k(x) = 0 and therefore ∆k,x(x) = 0. Because of the identity ∆k,x =

srefk,x

s0
k

2z1k∂z
1
k ∧ ∂h2k +O(|z1k|2), an easy calculation yields that

∂∆k,x = 2
srefk,x

s0k
(∂z1k ∧ ∂h2k) ∂z1k +O(|z1k|)
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and therefore

Θ0
k,x(x) = −2λ2

srefk,x(x)

s0k(x)

(

∂z1k(x) ∧ ∂z2k(x)
)2
.

The important point is that there exists a constant γ ′′ > 0 independent of k and x
such that |Θ0

k,x(x)| ≥ γ ′′.

Since the derivatives of Θ0
k,x are uniformly bounded, |Θ0

k,x| remains larger than γ′′

2

at every point of Bgk
(x, c̄) if c is small enough. It follows that, over R(sk)∩Bgk

(x, c),

the transversality to 0 of T̂ (sk) + Θk,x(w) is equivalent to that of the function

(T̂ (sk) + Θk,x(w))/Θ
0
k,x. The value of c we finally choose to use in Lemma 7 for

the construction of θk is one small enough to ensure that all the above statements
hold (but still independent of k, x and δ). Now define, over the disc D+ ⊂ C, the
function

vk(z) =
T̂ (sk)(θk(z))
Θ0

k,x(θk(z))

with values in C. Because Θ0
k,x is bounded from below over Bgk

(x, c̄) and because of
the bounds on the derivatives of θk given by Lemma 7, the functions vk : D+ → C
satisfy the hypotheses of Proposition 6 for all large enough k. Therefore, if C0 is a
constant larger than |Qk,x|C3,gk

, and if k is large enough, there exists wk ∈ C, with
|wk| ≤ δ

C0
, such that vk + wk is α-transverse to 0 over the unit disc D in C, where

α = δ
C0

log(( δ
C0
)−1)−p.

Multiplying again by Θ0
k,x and recalling that θk maps diffeomorphically D to a

subset of R(sk) containing R(sk) ∩ Bgk
(x, c), we get that the restriction to R(sk)

of T̂ (sk) + wkΘ
0
k,x is α′-transverse to 0 over R(sk) ∩ Bgk

(x, c) for some α′ differing

from α by at most a constant factor. Recall that Θk,x(wk) = wkΘ
0
k,x + O(|wk|2) +

O(k−1/2), and note that |wk|2 is at most of the order of δ2, while α′ is of the order of
δ log(δ−1)−p : so, if δ is small enough, one can assume that |wk|2 is much smaller than

α′. If k is large enough, k−1/2 is also much smaller than α′, so that T̂ (sk)+Θk,x(wk)

differs from T̂ (sk) +wkΘ
0
k,x by less than α′

2
, and is therefore α′

2
-transverse to 0 over

R(sk) ∩Bgk
(x, c).

Next, recall that R(sk + wkQk,x) is obtained by shifting R(sk) by an amount
−ρ(wk∆k,x)+O(|wk∆k,x|2) = O(|wk|) (because |∆k,x| is uniformly bounded, or more
generally because the perturbation of sk is O(|wk|) in C3 norm). So, if δ is small
enough, one can safely assume that the distance by which one shifts the points of
R(sk) is less than

c
2
. Therefore, given any point in R(sk + wkQk,x) ∩Bgk

(x, c
2
), the

corresponding point in R(sk) belongs to Bgk
(x, c).

We have seen above that the value of T̂ (sk+wkQk,x) at a point of R(sk+wkQk,x)

differs from the value of T̂ (sk) at the corresponding point of R(sk) by Θk,x(wk) ;

therefore it follows from the transversality properties of T̂ (sk) + Θk,x(wk) that

the restriction to R(sk + wkQk,x) of T̂ (sk + wkQk,x) is α′′-transverse to 0 over
R(sk + wkQk,x) ∩ Bgk

(x, c
2
) for some α′′ > 0 differing from α′ by at most a con-

stant factor.
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By the remarks above, this transversality property implies transversality to 0
of the restriction of T (sk + wkQk,x) over R(sk + wkQk,x) ∩Bgk

(x, c
2
) ; therefore, by

Lemma 6, T (sk +wkQk,x)⊕ Jac(P(sk +wkQk,x)) is η-transverse to 0 over Bgk
(x, c

4
),

with a transversality constant η differing from α′′ by at most a constant factor. So,
if δ is small enough and k large enough, in the case where Bgk

(x, c)∩R(sk) 6= ∅, we
have constructed wk such that sk+wkQk,x satisfies the required property P(η, y) at
every point y ∈ Bgk

(x, c
4
). By construction, |wkQk,x|C3,gk

≤ δ, the asymptotically
holomorphic sections Qk,x have uniform Gaussian decay away from x, and η is larger
than c′δ log(δ−1)−p for some constant c′ > 0, so all required properties hold in this
case.

Moreover, in the case where Bgk
(x, c) does not intersect R(sk), the section sk

already satisfies the property P( 3
4
c, y) at every point y of Bgk

(x, c
4
) and no per-

turbation is necessary. Therefore, the property P under consideration satisfies the
hypotheses of Proposition 3 whether Bgk

(x, c) intersects R(sk) or not. This ends
the proof of Proposition 7 for isolated sections sk.

In the case of one-parameter families of sections, the argument still works sim-
ilarly : we are now given sections st,k depending continuously on a parameter
t ∈ [0, 1], and try to perform the same construction as above for each value of
t, in such a way that everything depends continuously on t. As previously, we have
to show that one can perturb st,k in order to ensure that, for all t such that x lies
in a neighborhood of R(st,k), T (st,k)|R(st,k) is transverse to 0 over the intersection
of R(st,k) with a ball centered at x.

As before, a continuous family of rotations of C3 can be used to ensure that
s1t,k(x) and s2t,k(x) vanish for all t, allowing one to define ht,k for all t. Moreover
the argument at the end of Section 3.1 proves the existence of a continuous one-
parameter family of rotations of C2 acting on the two components (s1t,k, s

2
t,k) allowing

one to assume that |∂h2t,k(x)| ≥ γ′

2
for all t. Therefore, as in the case of isolated

sections, the problem is reduced to that of perturbing st,k when x lies in a neigh-

borhood of R(st,k) in order to obtain the transversality to 0 of T̂ (st,k)|R(st,k) over
the intersection of R(st,k) with a ball centered at x.

Because Lemma 7 and Proposition 6 also apply in the case of 1-parameter fami-
lies of sections, the argument used above to obtain the expected transversality result
for isolated sections also works here for all t such that x lies in the neighborhood
of R(st,k). However, the ball Bgk

(x, c) intersects R(st,k) only for certain values of
t ∈ [0, 1], which makes it necessary to work more carefully.

Define Ωk ⊂ [0, 1] as the set of all t for which Bgk
(x, c)∩R(st,k) 6= ∅. For all large

enough k and for all t ∈ Ωk, Lemma 7 allows one to define maps θt,k : D+ → R(st,k)
depending continuously on t and with the same properties as in the case of isolated
sections. Using local coordinates zit,k depending continuously on t given by Lemma

3 and sections sreft,k,x given by Lemma 2, the quantities Qt,k,x, ∆t,k,x, Θt,k,x(w), Θ
0
t,k,x

and vt,k can be defined for all t ∈ Ωk by the same formulae as above and depend
continuously on t.

Proposition 6 then gives, for all large k and for all t ∈ Ωk, complex numbers
wt,k of norm at most δ

C0
and depending continuously on t, such that the functions
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vt,k+wt,k are transverse to 0 over D. As in the case of isolated sections, this implies
that st,k + wt,kQt,k,x satisfies the required transversality property over Bgk

(x, c
4
).

Our problem is to define asymptotically holomorphic sections τt,k,x of C3 ⊗ Lk

for all values of t ∈ [0, 1], of C3-norm less than δ and with Gaussian decay away
from x, in such a way that the sections st,k + τt,k,x depend continuously on t ∈ [0, 1]
and satisfy the property P over Bgk

(x, c
4
) for all t. For this, let β : R+ → [0, 1] be

a continuous cut-off function equal to 1 over [0, 3c
4
] and to 0 over [c,+∞). Define,

for all t ∈ Ωk,
τt,k,x = β

(

distgk
(x,R(st,k))

)

wt,kQt,k,x,

and τt,k,x = 0 for all t 6∈ Ωk. It is clear that, for all t ∈ [0, 1], the sections τt,k,x
are asymptotically holomorphic, have Gaussian decay away from x, depend con-
tinuously on t and are smaller than δ in C3 norm. Moreover, for all t such that
distgk

(x,R(st,k)) ≤ 3c
4
, one has τt,k,x = wt,kQt,k,x, so the sections st,k + τt,k,x satisfy

property P over Bgk
(x, c

4
) for all such values of t.

For the remaining values of t, namely those such that x is at distance more than
3c
4
from R(st,k), the argument is the following : since the perturbation τt,k,x is smaller

than δ, every point of R(st,k + τt,k,x) lies within distance O(δ) of R(st,k). Therefore,
decreasing the maximum allowable value of δ in Proposition 3 if necessary, one can
safely assume that this distance is less than c

4
. It follows that x is at distance more

than c
2
of R(st,k + τt,k,x), and so that the property P( c

4
, y) holds at every point

y ∈ Bgk
(x, c

4
).

Therefore, for all large enough k and for all t ∈ [0, 1], the perturbed sections
st,k+τt,k,x satisfy property P over the ball Bgk

(x, c
4
). It follows that the assumptions

of Proposition 3 also hold for P in the case of one-parameter families, and so
Proposition 7 is proved.

4. Dealing with the antiholomorphic part

4.1. Holomorphicity in the neighborhood of cusp points. At this point
in the proof, we have constructed asymptotically holomorphic sections of C3 ⊗ Lk

satisfying all the required transversality properties. We now need to show that, by
further perturbation, one can obtain ∂̄-tameness. We first handle the case of cusp
points :

Proposition 8. Let (sk)kÀ0 be γ-generic asymptotically J-holomorphic sec-
tions of C3⊗Lk. Then there exist constants (Cp)p∈N and c > 0 such that, for all large

k, there exist ω-compatible almost-complex structures J̃k on X and asymptotically
J-holomorphic sections σk of C3 ⊗ Lk with the following properties : at any point
whose gk-distance to CJ̃k

(σk) is less than c, the almost-complex structure J̃k is inte-

grable and the map Pσk is J̃k-holomorphic ; and for all p ∈ N, |J̃k−J |Cp,gk
≤ Cpk

−1/2

and |σk − sk|Cp,gk
≤ Cpk

−1/2.
Furthermore, the result also applies to 1-parameter families of γ-generic asymp-

totically Jt-holomorphic sections (st,k)t∈[0,1],kÀ0 : for all large k there exist almost-

complex structures J̃t,k and asymptotically Jt-holomorphic sections σt,k depending
continuously on t and such that the above properties hold for all values of t. More-
over, if s0,k and s1,k already satisfy the required properties, and if one assumes that,
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for some ε > 0, Jt and st,k are respectively equal to J0 and s0,k for all t ∈ [0, ε] and
to J1 and s1,k for all t ∈ [1− ε, 1], then it is possible to ensure that σ0,k = s0,k and
σ1,k = s1,k.

The proof of this result relies on the following analysis lemma, which states that
any approximately holomorphic complex-valued function defined over the ball B+

of radius 11
10

in C2 can be approximated over the interior ball B of unit radius by a
holomorphic function :

Lemma 8. There exist an operator P : C∞(B+,C)→ C∞(B,C) and constants

(Kp)p∈N such that, given any function f ∈ C∞(B+,C), the function f̃ = P (f) is

holomorphic over the unit ball B and satisfies |f− f̃ |Cp(B) ≤ Kp |∂̄f |Cp(B+) for every
p ∈ N.

Proof. (see also [D1]). This is a standard fact which can be proved e.g. using
the Hörmander theory of weighted L2 spaces. Using a suitable weighted L2 norm
on B+ which compares uniformly with the standard norm on the interior ball B ′

of radius 1 + 1
20

(B ⊂ B′ ⊂ B+), one obtains a bounded solution to the Cauchy-

Riemann equation : for any ∂̄-closed (0, 1)-form ρ on B+ there exists a function
T (ρ) such that ∂̄T (ρ) = ρ and |T (ρ)|L2(B′) ≤ C|ρ|L2(B+) for some constant C.

Take ρ = ∂̄f and let h = T (ρ) : since ∂̄h = ρ = ∂̄f , the function f̃ = f − h is
holomorphic (in other words, we set P = Id−T ∂̄). Moreover the L2 norm of h and
the Cp norm of ∂̄h = ∂̄f over B′ are bounded by multiples of |∂̄f |Cp(B+) ; therefore,
by standard elliptic theory, the same is true for the Cp norm of h over the interior
ball B, which gives the desired result. ¤

We first prove Proposition 8 in the case of isolated sections sk, where the argu-
ment is fairly easy. Because sk is γ-generic, the set of points of R(sk) where T (sk)
vanishes, i.e. CJ(sk), is finite. Moreover ∇T (sk)|R(sk) is larger than γ at all cusp
points and ∇∇T (sk) is uniformly bounded, so there exists a constant r > 0 such
that the gk-distance between any two points of CJ(sk) is larger than 4r.

Let x be a point of CJ(sk), and consider a local approximately J-holomorphic
Darboux map ψk : (C2, 0)→ (X, x) as given by Lemma 3. Because of the bounds on
∂̄ψk, the ω-compatible almost-complex structure J ′k on the ball Bgk

(x, 2r) defined
by pulling back the standard complex structure of C2 satisfies bounds of the type
|J ′k − J |Cp,gk

= O(k−1/2) over Bgk
(x, 2r) for all p ∈ N.

Recall that the set of ω-skew-symmetric endomorphisms of square −1 of the
tangent bundle TX (i.e. ω-compatible almost-complex structures) is a subbundle
of End(TX) whose fibers are contractible. Therefore, there exists a one-parameter
family (J τ

k )τ∈[0,1] of ω-compatible almost-complex structures over Bgk
(x, 2r) depend-

ing smoothly on τ and such that J0
k = J and J1

k = J ′k. Also, let τx : Bgk
(x, 2r) →

[0, 1] be a smooth cut-off function with bounded derivatives such that τx = 1 over
Bgk

(x, r) and τx = 0 outside of Bgk
(x, 3

2
r).

Then, define J̃k to be the almost-complex structure which equals J outside of the
2r-neighborhood of CJ(sk), and which at any point y of a ball Bgk

(x, 2r) centered
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at x ∈ CJ(sk) coincides with J
τx(y)
k : it is quite easy to check that J̃k is integrable

over the r-neighborhood of CJ(sk) where it coincides with J ′k, and satisfies bounds

of the type |J̃k − J |Cp,gk
= O(k−1/2) ∀p ∈ N.

Let us now return to a neighborhood of x ∈ CJ(sk), where we need to perturb
sk to make the corresponding projective map locally J̃k-holomorphic. First notice
that, by composing with a rotation of C3 (constant over X), one can safely assume
that s1k(x) = s2k(x) = 0. Therefore, |s0k(x)| ≥ γ, and decreasing r if necessary one

can assume that |s0k| remains larger than γ
2
at every point of Bgk

(x, r). The J̃k-
holomorphicity of Psk over a neighborhood of x is then equivalent to that of the
map hk with values in C2 defined by

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.

Because of the properties of the map ψk given by Lemma 3, there exist constants
λ > 0 and r′ > 0, independent of k, such that ψk(BC2(0, 11

10
λ)) is contained in

Bgk
(x, r) while ψk(BC2(0, 1

2
λ)) contains Bgk

(x, r′). We now define the two complex-
valued functions f 1k (z) = h1k(ψk(λz)) and f

2
k (z) = h2k(ψk(λz)) over the ball B

+ ⊂ C2.

By definition of J̃k, the map ψk intertwines the almost-complex structure J̃k over
Bgk

(x, r) and the standard complex structure of C2, so our goal is to make the
functions f 1k and f 2k holomorphic in the usual sense over a ball in C2.

This is where we use Lemma 8. Remark that, because of the estimates on ∂̄Jψk

given by Lemma 3 and those on ∂̄Jhk coming from asymptotic holomorphicity, we
have |∂̄f i

k|Cp(B+) = O(k−1/2) for every p ∈ N and i ∈ {1, 2}. Therefore, by Lemma 8

there exist two holomorphic functions f̃ 1k and f̃ 2k , defined over the unit ball B ⊂ C2,

such that |f i
k − f̃ i

k|Cp(B) = O(k−1/2) for every p ∈ N and i ∈ {1, 2}.
Let β : [0, 1] → [0, 1] be a smooth cut-off function such that β = 1 over [0, 1

2
]

and β = 0 over [3
4
, 1], and define, for all z ∈ B and i ∈ {1, 2}, f̂ i

k(z) = β(|z|)f̃ i
k(z) +

(1 − β(|z|))f i
k(z). By construction, the functions f̂ i

k are holomorphic over the ball
of radius 1

2
and differ from f i

k by O(k−1/2).

Going back through the coordinate map, let ĥi
k be the functions on the neigh-

borhood Ux = ψk(BC2(0, λ)) of x which satisfy ĥi
k(ψk(λz)) = f̂ i

k(z) for every z ∈ B.

Define ŝ0k = s0k, ŝ
1
k = ĥ1ks

0
k and ŝ2k = ĥ2ks

0
k over Ux, and let σk be the global section

of C3 ⊗ Lk which ∀x ∈ CJ(sk) equals ŝk over Ux and which coincides with sk away
from CJ(sk).

Because f̂ i
k = f i

k near the boundary of B, ŝk coincides with sk near the boundary
of Ux, and σk is therefore a smooth section of C3 ⊗ Lk. For every p ∈ N, it follows
from the bound |f̂ i

k− f i
k|Cp(B) = O(k−1/2) that |σk− sk|Cp,gk

= O(k−1/2). Moreover,

the functions f̂ i
k are holomorphic over BC2(0, 1

2
) where they coincide with f̃ i

k, so the

functions ĥi
k are J̃k-holomorphic over ψk(BC2(0, 1

2
λ)) ⊃ Bgk

(x, r′), and it follows

that Pσk is J̃k-holomorphic over Bgk
(x, r′).

Therefore, the almost-complex structures J̃k and the sections σk satisfy all the
required properties, except that the integrability of J̃k and the holomorphicity of Pσk
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are proved to hold on the r′-neighborhood of CJ(sk) rather than on a neighborhood
of CJ̃k

(σk).

However, the Cp bounds |J̃k−Jk| = O(k−1/2) and |σk−sk| = O(k−1/2) imply that
|JacJ̃k

(Pσk)− JacJ(Psk)| = O(k−1/2) and |TJ̃k
(σk)− TJ(sk)| = O(k−1/2). Therefore

it follows from the transversality properties of sk that the points of CJ̃k
(σk) lie

within gk-distance O(k−1/2) of CJ(sk). In particular, if k is large enough, the r′

2
-

neighborhood of CJ̃k
(σk) is contained in the r′-neighborhood of CJ(sk), which ends

the proof of Proposition 8 in the case of isolated sections.

In the case of one-parameter families of sections, the argument is similar. One
first notices that, because of γ-genericity, there exists r > 0 such that, for every
t ∈ [0, 1], the set CJt

(st,k) consists of finitely many points, any two of which are mu-
tually distant of at least 4r. Therefore, the points of CJt

(st,k) depend continuously
on t, and their number remains constant.

Consider a continuous family (xt)t∈[0,1] of points of CJt
(st,k) : Lemma 3 provides

approximately Jt-holomorphic Darboux maps ψt,k depending continuously on t on
a neighborhood of xt. By pulling back the standard complex structure of C2, one
obtains integrable almost-complex structures J ′t,k over Bgk

(xt, 2r), depending con-

tinuously on t and differing from Jt by O(k−1/2). As previously, because the set of
ω-compatible almost-complex structures is contractible, one can define a continu-
ous family of almost-complex structures J̃t,k on X by gluing together Jt with the
almost-complex structures J ′t,k defined over Bgk

(xt, 2r), using a cut-off function at

distance r from CJt
(st,k). By construction, the almost-complex structures J̃t,k are

integrable over the r-neighborhood of CJt
(st,k), and |J̃t,k − Jt|Cp,gk

= O(k−1/2) for
all p ∈ N.

Next, we perturb st,k near xt ∈ CJt
(st,k) in order to make the corresponding

projective map locally J̃t,k-holomorphic. As before, composing with a rotation of
C3 (constant over X and depending continuously on t) and decreasing r if necessary,
we can assume that s1t,k(xt) = s2t,k(xt) = 0 and therefore that |s0t,k| remains larger

than γ
2
over Bgk

(xt, r). The J̃t,k-holomorphicity of Pst,k over Bgk
(xt, r) is then

equivalent to that of the map ht,k with values in C2 defined as above.
As previously, there exist constants λ and r′ such that ψt,k(BC2(0, 11

10
λ)) is con-

tained in Bgk
(xt, r) and ψt,k(BC2(0, 1

2
λ)) ⊃ Bgk

(xt, r
′) ; once again, our goal is to

make the functions f i
t,k : B+ → C defined by f i

t,k(z) = hi
t,k(ψt,k(λz)) holomorphic

in the usual sense.
Because of the estimates on ∂̄Jt

ψt,k and ∂̄Jt
ht,k, we have |∂̄f i

t,k|Cp(B+) = O(k−1/2)

∀p ∈ N, so Lemma 8 provides holomorphic functions f̃ i
t,k overB which differ from f i

t,k

by O(k−1/2). By the same cut-off procedure as above, we can thus define functions

f̂ i
t,k which are holomorphic over BC2(0, 1

2
) and coincide with f i

t,k near the boundary
of B. Going back through the coordinate maps, we define as previously functions
ĥi
t,k and sections ŝt,k over the neighborhood Ut,xt

= ψt,k(BC2(0, λ)) of xt. Since ŝt,k
coincides with st,k near the boundary of Ut,xt

, we can obtain smooth sections σt,k of
C3⊗Lk by gluing st,k together with the various sections ŝt,k defined near the points
of CJt

(st,k).
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As previously, the maps Pσt,k are J̃t,k-holomorphic over the r′-neighborhood of
CJt

(st,k) and satisfy |σt,k− st,k|Cp,gk
= O(k−1/2) ; therefore the desired result follows

from the observation that, for large enough k, CJ̃t,k
(σt,k) lies within distance r′

2
of

CJt
(st,k).

We now consider the special case where s0,k already satisfies the required con-
ditions, i.e. there exists an almost-complex structure J̄0,k within O(k−1/2) of J0,
integrable near CJ̄0,k

(s0,k), and such that Ps0,k is J̄0,k-holomorphic near CJ̄0,k
(s0,k).

Although this is actually not necessary for the result to hold, we also assume, as in
the statement of Proposition 8, that st,k = s0,k and Jt = J0 for every t ≤ ε, for some
ε > 0. We want to prove that one can take σ0,k = s0,k in the above construction.

We first show that one can assume that J̃0,k coincides with J̄0,k over a small
neighborhood of CJ0

(s0,k). For this, remark that CJ0
(s0,k) lies within O(k−1/2) of

CJ̄0,k
(s0,k), so there exists a constant δ such that, for large enough k, J̄0,k is integrable

and Ps0,k is J̄0,k-holomorphic over the δ-neighborhood of CJ0
(s0,k).

Fix points (xt)t∈[0,1] in CJt
(st,k), and consider, for all t ≥ ε, the approximately

Jt-holomorphic Darboux coordinates (z1t,k, z
2
t,k) on a neighborhood of xt and the

inverse map ψt,k given by Lemma 3 and which are used to define the almost-complex

structures J ′t,k and J̃t,k near xt. We want to show that one can extend the family ψt,k

to all t ∈ [0, 1] in such a way that the map ψ0,k is J̄0,k-holomorphic. The hypothesis
that Jt and st,k are the same for all t ∈ [0, ε] makes things easier to handle because
Jε = J0 and xε = x0.

Since J̄0,k is integrable over Bgk
(x0, δ) and ω-compatible, there exist local com-

plex Darboux coordinates Zk = (Z1
k , Z

2
k) at x0 which are J̄0,k-holomorphic. It

follows from the approximate J0-holomorphicity of the coordinates zε,k = (z1ε,k, z
2
ε,k)

and from the bound |J0 − J̄0,k| = O(k−1/2) that, composing with a linear endo-
morphism of C2 if necessary, one can assume that the differentials at x0 of the two
coordinate maps, namely ∇x0

zε,k and ∇x0
Zk, lie within O(k−1/2) of each other. For

all t ∈ [0, ε], žt,k = t
ε
zε,k + (1 − t

ε
)Zk defines local coordinates on a neighborhood

of x0 ; however, for t ∈ (0, ε) this map fails to be symplectic by an amount which
is O(k−1/2). So we apply Moser’s argument to žt,k in order to get local Darboux
coordinates zt,k over a neighborhood of x0 which interpolate between Zk and zε,k
and which differ from žt,k by O(k−1/2). It is easy to check that, if k is large enough,
then the coordinates zt,k are well-defined over the ball Bgk

(xt, 2r). Since ∂̄J0
Zk and

∂̄J0
zε,k are O(k−1/2), and because zt,k differs from žt,k by O(k−1/2), the coordinates

defined by zt,k are approximately J0-holomorphic (in the sense of Lemma 3) for all
t ∈ [0, ε].

Defining ψt,k as the inverse of the map zt,k for every t ∈ [0, ε], it follows im-
mediately that the maps ψt,k, which depend continuously on t, are approximately
Jt-holomorphic over a neighborhood of 0 for every t ∈ [0, 1], and that ψ0,k is J̄0,k-
holomorphic.

We can then define J ′t,k as previously onBgk
(xt, 2r), and notice that J ′0,k coincides

with J̄0,k. Therefore, the corresponding almost-complex structures J̃t,k over X, in
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addition to all the properties described previously, also satisfy the equality J̃0,k =
J̄0,k over the r-neighborhood of CJ0

(s0,k).
It follows that, constructing the sections σt,k from st,k as previously, we have

σ0,k = s0,k. Indeed, since Ps0,k is already J̃0,k-holomorphic over the r-neighborhood

of CJ0
(s0,k), we get that, in the above construction, h10,k and h

2
0,k are J̃0,k-holomorphic,

and so f 10,k and f 20,k are holomorphic. Therefore, by definition of the operator P of

Lemma 8, we have f̃ 10,k = f 10,k and f̃ 20,k = f 20,k, which clearly implies that σ0,k = s0,k.
The same argument applies near t = 1 to show that, if s1,k already satisfies the

expected properties and if Jt and st,k are the same for all t ∈ [1 − ε, 1], then one
can take σ1,k = s1,k. This ends the proof of Proposition 8.

4.2. Holomorphicity at generic branch points. Our last step in order
to obtain ∂̄-tame sections is to ensure, by further perturbation, the vanishing of
∂̄J̃k

(Psk) over the kernel of ∂J̃k
(Psk) at every branch point.

Proposition 9. Let (sk)kÀ0 be γ-generic asymptotically J-holomorphic sec-
tions of C3 ⊗ Lk. Assume that there exist ω-compatible almost-complex structures
J̃k such that |J̃k − J |Cp,gk

= O(k−1/2) for all p ∈ N and such that, for some

constant c > 0, fk = Psk is J̃k-holomorphic over the c-neighborhood of CJ̃k
(sk).

Then, for all large k, there exist sections σk such that the following properties hold :
|σk−sk|Cp,gk

= O(k−1/2) for all p ∈ N ; σk coincides with sk over the c
2
-neighborhood

of CJ̃k
(σk) = CJ̃k

(sk) ; and, at every point of RJ̃k
(σk), ∂̄J̃k

(Pσk) vanishes over the
kernel of ∂J̃k

(Pσk).
Moreover, the same result holds for one-parameter families of asymptotically Jt-

holomorphic sections (st,k)t∈[0,1],kÀ0 satisfying the above properties. Furthermore, if
s0,k and s1,k already satisfy the properties required of σ0,k and σ1,k, then one can
take σ0,k = s0,k and σ1,k = s1,k.

The role of the almost-complex structure J in the statement of this result may
seem ambiguous, as the sections sk are also asymptotically holomorphic and generic
with respect to the almost-complex structures J̃k. The point is that, by requiring
that all the almost-complex structures J̃k lie within O(k−1/2) of a fixed almost-
complex structure, one ensures the existence of uniform bounds on the geometry of
J̃k independently of k.

We now prove Proposition 9 in the case of isolated sections. In all the following,
we use the almost complex structure J̃k implicitly. Consider a point x ∈ R(sk)
at distance more than 3

4
c from C(sk), and let Kx be the one-dimensional complex

subspace Ker ∂fk(x) of TxX. Because x 6∈ C(sk), we have TxX = TxR(sk) ⊕ Kx.
Therefore, there exists a unique 1-form θx ∈ T ∗xX ⊗Tfk(x)CP2 such that the restric-
tion of θx to TxR(sk) is zero and the restriction of θx to Kx is equal to ∂̄fk(x)|Kx

.

Because the restriction of T (sk) to R(sk) is transverse to 0 and because x is at
distance more than 3

4
c from C(sk), the quantity |T (sk)(x)| is bounded from below

by a uniform constant, and therefore the angle between TxR(sk) and Kx is also
bounded from below. So there exists a constant C independent of k and x such
that |θx| ≤ Ck−1/2. Moreover, because ∂̄fk vanishes over the c-neighborhood of
C(sk), the 1-form θx vanishes at all points x close to C(sk) ; therefore we can extend
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θ into a section of T ∗X⊗f ∗kTCP2 over R(sk) which vanishes over the c-neighborhood
of C(sk), and which satisfies bounds of the type |θ|Cp,gk

= O(k−1/2) for all p ∈ N.
Next, use the exponential map of the metric g to identify a tubular neighborhood

of R(sk) with a neighborhood of the zero section in the normal bundle NR(sk).
Given δ > 0 sufficiently small, we define a section χ of f ∗kTCP2 over the δ-tubular
neighborhood of R(sk) by the following identity : given any point x ∈ R(sk) and
any vector ξ ∈ NxR(sk) of norm less than δ,

χ(expx(ξ)) = β(|ξ|) θx(ξ),

where the fibers of f ∗kTCP2 at x and at expx(ξ) are implicitly identified using radial
parallel transport, and β : [0, δ]→ [0, 1] is a smooth cut-off function equal to 1 over
[0, 1

2
δ] and 0 over [3

4
δ, δ]. Since χ vanishes near the boundary of the chosen tubular

neighborhood, we can extend it into a smooth section over all of X which vanishes
at distance more than δ from R(sk).

Decreasing δ if necessary, we can assume that δ < c
2
: it then follows from

the vanishing of θ over the c-neighborhood of C(sk) that χ vanishes over the c
2
-

neighborhood of C(sk). Moreover, because |θ|Cp,gk
= O(k−1/2) for all p ∈ N and

because the cut-off function β is smooth, χ also satisfies bounds |χ|Cp,gk
= O(k−1/2)

for all p ∈ N.
Fix a point x ∈ R(sk) : χ is identically zero over R(sk) by construction, so∇χ(x)

vanishes over TxR(sk) ; and, because β ≡ 1 near the origin and by definition of the
exponential map, ∇χ(x)|NxR(sk) = θx|NxR(sk). Since TxR(sk) and NxR(sk) generate
TxX, we conclude that ∇χ(x) = θx. In particular, restricting to Kx, we get that
∇χ(x)|Kx

= θx|Kx
= ∂̄fk(x)|Kx

. Equivalently, since Kx is a complex subspace of

TxX, we have ∂̄χ(x)|Kx
= ∂̄fk(x)|Kx

and ∂χ(x)|Kx
= 0 = ∂fk(x)|Kx

.

Recall that, for all x ∈ X, the tangent space to CP2 at fk(x) = Psk(x) canoni-
cally identifies with the space of complex linear maps from Csk(x) to (Csk(x))⊥ ⊂
C3 ⊗ Lk

x. This allows us to define σk(x) = sk(x)− χ(x).sk(x).
It follows from the properties of χ described above that σk coincides with sk over

the c
2
-neighborhood of C(sk) and that |σk−sk|Cp,gk

= O(k−1/2) for all p ∈ N. Because
of the transversality properties of sk, we get that the points of C(σk) lie within
distance O(k−1/2) of C(sk), and therefore if k is large enough that C(σk) = C(sk).

Let f̃k = Pσk, and consider a point x ∈ R(sk) : since χ(x) = 0 and therefore

f̃k(x) = fk(x), it is easy to check that∇f̃k(x) = ∇fk(x)−∇χ(x) in T ∗xX⊗Tfk(x)CP2.

Therefore, setting Kx = Ker ∂fk(x) as above, we get that ∂f̃k(x) = ∂fk(x)− ∂χ(x)
and ∂̄f̃k(x) = ∂̄fk(x) − ∂̄χ(x) both vanish over Kx. A first consequence is that

∂f̃k(x) also has rank one, i.e. x ∈ R(σk) : therefore R(sk) ⊂ R(σk). However,
because σk differs from sk by O(k−1/2), it follows from the transversality properties
of sk that, for large enough k, R(σk) is contained in a small neighborhood of R(sk),
and so R(σk) = R(sk).

Moreover, recall that at every point x of R(σk) = R(sk) one has ∂̄f̃k(x)|Kx
=

∂f̃k(x)|Kx
= 0. Therefore ∂̄f̃k(x) vanishes over the kernel of ∂f̃k(x), and so the

sections σk satisfy all the required properties.
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To handle the case of one-parameter families, remark that the above construc-
tion consists of explicit formulae, so it is easy to check that θ, χ and σk depend
continuously on sk and J̃k. Therefore, starting from one-parameter families st,k and

J̃t,k, the above construction yields for all t ∈ [0, 1] sections σt,k which satisfy the
required properties and depend continuously on t.

Moreover, if s0,k already satisfies the required properties, i.e. ∂̄f0,k(x)|Kx
vanishes

at any point x ∈ R(s0,k), then the above definitions give θ ≡ 0, and therefore χ ≡ 0
and σ0,k = s0,k ; similarly for t = 1, which ends the proof of Proposition 9.

4.3. Proof of the main theorems. Assuming that Theorem 3 holds, The-
orems 1 and 2 follow directly from the results we have proved so far : combining
Propositions 1, 4, 5 and 7, one gets, for all large k, asymptotically holomorphic sec-
tions of C3 ⊗ Lk which are γ-generic for some constant γ > 0 ; Propositions 8 and
9 imply that these sections can be made ∂̄-tame by perturbing them by O(k−1/2)
(which preserves the genericity properties if k is large enough) ; and Theorem 3 im-
plies that the corresponding projective maps are then approximately holomorphic
singular branched coverings.

Let us now prove Theorem 4. We are given two sequences s0,k and s1,k of sections
of C3⊗Lk which are asymptotically holomorphic, γ-generic and ∂̄-tame with respect
to almost-complex structures J0 and J1, and want to show the existence of a one-
parameter family of almost-complex structures Jt interpolating between J0 and
J1 and of generic and ∂̄-tame asymptotically Jt-holomorphic sections interpolating
between s0,k and s1,k.

One starts by defining sections st,k and compatible almost-complex structures Jt

interpolating between (s0,k, J0) and (s1,k, J1) in the following way : for t ∈ [0, 2
7
], let

st,k = s0,k and Jt = J0 ; for t ∈ [2
7
, 3
7
], let st,k = (3−7t)s0,k and Jt = J0 ; for t ∈ [3

7
, 4
7
],

let st,k = 0 and take Jt to be a path of ω-compatible almost-complex structures
from J0 to J1 (recall that the space of compatible almost-complex structures is
connected) ; for t ∈ [ 4

7
, 5
7
], let st,k = (7t − 4)s1,k and Jt = J1 ; and for t ∈ [ 5

7
, 1],

let st,k = s1,k and Jt = J1. Clearly, Jt and st,k depend continuously on t, and the
sections st,k are asymptotically Jt-holomorphic for all t ∈ [0, 1].

Since γ-genericity is a local and C3-open property, there exists α > 0 such that
any section differing from s0,k by less than α in C3 norm is γ

2
-generic, and similarly

for s1,k. Applying Propositions 1, 4, 5 and 7, we get for all large k asymptotically
Jt-holomorphic sections σt,k which are η-generic for some η > 0, and such that
|σt,k − st,k|C3,gk

< α for all t ∈ [0, 1].
We now set s′t,k = s0,k for t ∈ [0, 1

7
] ; s′t,k = (2 − 7t)s0,k + (7t − 1)σ 2

7
,k for

t ∈ [1
7
, 2
7
] ; s′t,k = σt,k for t ∈ [2

7
, 5
7
] ; s′t,k = (7t − 5)s1,k + (6 − 7t)σ 5

7
,k for t ∈ [5

7
, 6
7
] ;

and s′t,k = s1,k for t ∈ [6
7
, 1]. By construction, the sections s′t,k are asymptotically

Jt-holomorphic for all t ∈ [0, 1] and depend continuously on t. Moreover, they
are γ

2
-generic for t ∈ [0, 2

7
] because s′t,k then lies within α in C3 norm of s0,k, and

similarly for t ∈ [ 5
7
, 1] because s′t,k then lies within α in C3 norm of s1,k. They are
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also η-generic for t ∈ [ 2
7
, 5
7
] because s′t,k is then equal to σt,k. Therefore the sections

s′t,k are η′-generic for all t ∈ [0, 1], where η′ = min(η, γ
2
).

Next, we apply Proposition 8 to the sections s′t,k : since s
′
0,k = s0,k and s

′
1,k = s1,k

are already ∂̄-tame, and since the families s′t,k and Jt are constant over [0, 1
7
] and

[6
7
, 1], one can require of the sections s′′t,k given by Proposition 8 that s′′0,k = s′0,k = s0,k

and s′′1,k = s′1,k = s1,k. Finally, we apply Proposition 9 to the sections s′′t,k to

obtain sections σ′′t,k which simultaneously have genericity and ∂̄-tameness properties.

Since s′′0,k and s′′1,k are already ∂̄-tame, one can require that σ′′0,k = s′′0,k = s0,k and
σ′′1,k = s′′1,k = s1,k. The sections σ′′t,k interpolating between s0,k and s1,k therefore
satisfy all the required properties, which ends the proof of Theorem 4.

5. Generic tame maps and branched coverings

5.1. Structure near cusp points. In order to prove Theorem 3, we need to
check that, given any generic and ∂̄-tame asymptotically holomorphic sections sk
of C3 ⊗ Lk, the corresponding maps fk = Psk : X → CP2 are, at any point of X,
locally approximately holomorphically modelled on one of the three model maps of
Definition 2. We start with the case of the neighborhood of a cusp point.

Let x0 ∈ X be a cusp point of fk, i.e. an element of CJ̃k
(sk), where J̃k is the

almost-complex structure involved in the definition of ∂̄-tameness. By definition,
J̃k differs from J by O(k−1/2) and is integrable over a neighborhood of x0, and fk
is J̃k-holomorphic over a neighborhood of x0. Therefore, choose J̃k-holomorphic
local complex coordinates on X near x0, and local complex coordinates on CP2

near fk(x0) : the map h corresponding to fk in these coordinate charts is, locally,
holomorphic. Because the coordinate map on X is within O(k−1/2) of being J-
holomorphic, we can restrict ourselves to the study of the holomorphic map h =
(h1, h2) defined over a neighborhood of 0 in C2 with values in C2, which satisfies
transversality properties following from the genericity of sk. Our aim will be to show
that, composing h with holomorphic local diffeomorphisms of the source space C2

or of the target space C2, we can get h to be of the form (z1, z2) 7→ (z31 − z1z2, z2)
over a neighborhood of 0.

First, because |∂fk| is bounded from below and x0 is a cusp point, the derivative
∂h(0) does not vanish and has rank one. Therefore, composing with a rotation of
the target space C2 if necessary, we can assume that its image is directed along the
second coordinate, i.e. Im (∂h(0)) = {0} × C.

Calling Z1 and Z2 the two coordinates on the target space C2, it follows im-
mediately that the function z2 = h∗Z2 over the source space has a non-vanishing
differential at 0, and can therefore be considered as a local coordinate function on
the source space. Choose z1 to be any linear function whose differential at the
origin is linearly independent with dz2(0), so that (z1, z2) define holomorphic local
coordinates on a neighborhood of 0 in C2. In these coordinates, h is of the form
(z1, z2) 7→ (h1(z1, z2), z2) where h1 is a holomorphic function such that h1(0) = 0
and ∂h1(0) = 0.
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Next, notice that, because Jac(fk) vanishes transversely at x0, the quantity
Jac(h) = det(∂h) = ∂h1/∂z1 vanishes transversely at the origin, i.e.

(

∂2h1
∂z21

(0),
∂2h1
∂z1∂z2

(0)

)

6= (0, 0).

Moreover, an argument similar to that of Section 3.2 shows that locally, because we
have arranged for |∂h2| to be bounded from below, the ratio between the quantities

T (sk) and T̂ = ∂h2 ∧ ∂Jac(h) is bounded from above and below. In particular, the

fact that x0 ∈ CJ̃k
(sk) implies that the restriction of T̂ to the set of branch points

vanishes transversely at the origin.
In our case, T̂ = dz2∧∂(∂h1

∂z1
) = −(∂2h1/∂z21) dz1∧dz2. Therefore, the vanishing

of T̂ (0) implies that ∂2h1/∂z
2
1 (0) = 0. It follows that ∂2h1/∂z1∂z2 (0) must be non-

zero ; rescaling the coordinate z1 by a constant factor if necessary, this derivative
can be assumed to be equal to −1. Therefore, the map h can be written as

h(z1, z2) = (−z1z2 + λz22 +O(|z|3), z2)
= (−z1z2 + λz22 + αz31 + βz21z2 + γz1z

2
2 + δz32 +O(|z|4), z2)

where λ, α, β, γ and δ are complex coefficients.
We now consider the following coordinate changes : on the target space C2,

define ψ(Z1, Z2) = (Z1 − λZ2
2 − δZ3

2 , Z2), and on the source space C2, define
φ(z1, z2) = (z1 + βz21 + γz1z2, z2). Clearly, these two maps are local diffeomor-
phisms near the origin. Therefore, one can replace h by ψ ◦ h ◦ φ, which has the
effect of killing most terms of the above expansion : this allows us to consider that
h is of the form

h(z1, z2) = (−z1z2 + αz31 +O(|z|4), z2).
Next, recall that the set of branch points is, in our local setting, the set of points

where Jac(h) = ∂h1/∂z1 = −z2 + 3αz21 + O(|z|3) vanishes. Therefore, the tangent
direction to the set of branch points at the origin is the z1 axis, and the transverse
vanishing of T̂ at the origin implies that ∂

∂z1
T̂ (0) 6= 0. Using the above formula for

T̂ , we conclude that ∂3h1/∂z
3
1 6= 0, i.e. α 6= 0.

Rescaling the two coordinates z1 and Z1 by a constant factor, we can assume
that α is equal to 1. Therefore, we have used all the transversality properties of h
to show that, on a neighborhood of x0, it is of the form

h(z1, z2) = (−z1z2 + z31 +O(|z|4), z2).
The uniform bounds and transversality estimates on sk can be used to show that all
the rescalings and transformations we have used are “nice”, i.e. they have bounded
derivatives and their inverses have bounded derivatives.

Our next task is to show that further coordinate changes can kill the higher
order terms still present in the expression of h. For this, we first prove the following
lemma :

Lemma 9. Let D be the space of holomorphic local diffeomorphisms of C2 near
the origin, and let H be the space of holomorphic maps from a neighborhood of 0
in C2 to a neighborhood of 0 in C2. Let h0 ∈ H be the map (x, y) 7→ (x3 − xy, y).
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Then the differential at the point (Id, Id) of the map F : D × D → H defined by
F(Φ,Ψ) = Ψ ◦ h0 ◦ Φ is surjective.

Proof. Let φ = (φ1, φ2) and ψ = (ψ1, ψ2) be two tangent vectors to D at Id
(i.e. holomorphic functions over a neighborhood of 0 in C2 with values in C2). The
differential of F at (Id, Id) is given by

DF(Id,Id)(φ, ψ)(x, y) =
d

dt |t=0

[

(Id + tψ) ◦ h0 ◦ (Id + tφ)(x, y)
]

=
(

ψ1(x
3 − xy, y) + (3x2 − y)φ1(x, y)− xφ2(x, y), ψ2(x

3 − xy, y) + φ2(x, y)
)

.

Proving the surjectivity of DF at (Id, Id) is equivalent to checking that, given any
tangent vector (ε1, ε2) ∈ Th0

H (i.e. a holomorphic function over a neighborhood of
0 in C2 with values in C2), there exist φ and ψ such that DF(Id,Id)(φ, ψ)(x, y) =
(ε1(x, y), ε2(x, y)). Projecting this equality on the second factor, one gets

ψ2(x
3 − xy, y) + φ2(x, y) = ε2(x, y),

which implies that φ2(x, y) = ε2(x, y)−ψ2(x
3−xy, y). Replacing φ2 by its expression

in the first component, and setting ε(x, y) = ε1(x, y)+x ε2(x, y), the equation which
we need to solve finally rewrites as

ψ1(x
3 − xy, y) + xψ2(x

3 − xy, y) + (3x2 − y)φ1(x, y) = ε(x, y),

where the parameter ε can be any holomorphic function, and ψ1, ψ2 and φ1 are the
unknown quantities.

Solving this equation is a priori difficult, so in order to get an idea of the general
solution it is best to first work in the ring of formal power series in the two variables
x and y. Since the equation is linear, it is sufficient to find a solution when ε is a
monomial of the form ε(x, y) = xpyq with (p, q) ∈ N2.

First note that, for ε(x, y) = yq (i.e. when p = 0), a trivial solution is given
by ψ1(x

3 − xy, y) = yq, ψ2 = 0 and φ1 = 0. Next, remark that, if there exists a
solution for a given ε(x, y), then there also exists a solution for x ε(x, y) : indeed, if

ψ1(x
3−xy, y)+xψ2(x

3−xy, y)+(3x2−y)φ1(x, y) = ε(x, y), then setting ψ̃1 =
1
3
y ψ2,

ψ̃2 = ψ1 and φ̃1(x, y) = xφ1(x, y) +
1
3
ψ2(x

3 − xy, y) one gets

ψ̃1(x
3 − xy, y) + x ψ̃2(x

3 − xy, y) + (3x2 − y) φ̃1(x, y) = x ε(x, y).

Therefore, by induction on p, the equation has a solution for all monomials xpyq,
and by linearity there exists a formal solution for all power series ε(x, y). A short
calculation gives the following explicit solution of the equation for ε(x, y) = xpyq :
if p = 2k is even,

ψ1(x
3 − xy, y) = 3−kyk+q, ψ2 = 0, φ1(x, y) =

k−1
∑

j=0

3−(j+1)yj+qx2k−2−2j ,

and if p = 2k + 1 is odd,

ψ1 = 0, ψ2(x
3 − xy, y) = 3−kyk+q, φ1(x, y) =

k−1
∑

j=0

3−(j+1)yj+qx2k−1−2j .
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In particular, ψ1 and ψ2 actually only depend on the second variable y.
The above formulae make it possible to compute a general solution for any

holomorphic ε, given by the following expressions, where γ+ and γ− are by definition
the two square roots of 1

3
y (exchanging γ+ and γ− clearly does not affect the result) :

ψ1(x
3 − xy, y) = 1

2

(

ε(γ+, y) + ε(γ−, y)
)

,

ψ2(x
3 − xy, y) = 1

2γ+

(

ε(γ+, y)− ε(γ−, y)
)

,

φ1(x, y) =
1

6γ+

[

ε(x, y)− ε(γ+, y)

x− γ+
− ε(x, y)− ε(γ−, y)

x− γ−

]

.

Note that these functions are actually smooth, although they depend on γ±
which are not smooth functions of y, because the odd powers of γ± cancel each
other in the expressions. Similarly, one easily checks that, when y → 0 or x→ γ±,
the vanishing of a term in the formula for φ1 always makes up for the singularity
of the denominator, so that φ1 is actually well-defined everywhere. Another way
to see these smoothness properties is to observe that, because these formulae are
simply a rewriting of the formal solution computed previously for power series, the
functions they define admit power series expansions at the origin. Lemma 9 is
therefore proved. ¤

Lemma 9 implies the desired result. Indeed, endow the space of holomorphic
maps from a neighborhoodD of 0 in C2 to C2 with a structure of Hilbert space given
by a suitable Sobolev norm, e.g. the L2

4 norm which is stronger than the C1 norm :
then, since the differential at (Id, Id) of F is a surjective continuous linear map, the
submersion theorem for Hilbert spaces implies the existence of a constant α > 0
with the property that, given any holomorphic function ε such that |ε|L2

4(D) < α,

there exist holomorphic local diffeomorphisms Φ and Ψ of C2 near 0, L2
4-close to

the identity, such that Ψ ◦ h0 ◦ Φ = h0 + ε.
Recall that we are trying to remove the higher order terms from h(z1, z2) =

(z31 − z1z2 + θ(z1, z2), z2), where θ(z1, z2) = O(|z|4). There is no reason for the L2
4

norm of θ to be smaller than α over the fixed domain D. However the required
bound can be achieved by rescaling all the coordinates : let λ be a small positive
constant, and consider the diffeomorphisms Φλ : (z1, z2) 7→ (λz1, λ

2z2) of the source
space and Ψλ : (Z1, Z2) 7→ (λ−3Z1, λ

−2Z2) of the target space. Then we have

Ψλ ◦ h0 ◦ Φλ = h0, and Ψλ ◦ h ◦ Φλ(z1, z2) = (z31 − z1z2 + θ̃λ(z1, z2), z2) where

θ̃λ(z1, z2) = λ−3θ(λz1, λ
2z2).

Let R be a constant such that D ⊂ B(0, R), and let δ > 0 be a constant
such that δ2(1 + R2 + R4 + R6 + R8) vol(D) < α2. It follows from the bound

|∇4θ̃λ(z1, z2)| ≤ λ |∇4θ(λz1, λ
2z2)| that, if λ is small enough, the fourth derivative

of θ̃λ remains smaller than δ over D. Since θ̃λ and its first three derivatives vanish
at the origin, by integrating the bound |∇4θ̃λ| < δ one gets that |θ̃λ|L2

4(D) < α.

Therefore, if λ is small enough there exist local diffeomorphisms Φ̃ and Ψ̃ such that
Ψ̃ ◦h0 ◦ Φ̃ = Ψλ ◦h ◦Φλ over the domain D. Equivalently, setting Ψ = Ψ−1λ ◦ Ψ̃ ◦Ψλ

and Φ = Φλ ◦ Φ̃ ◦ Φ−1λ , we have Ψ ◦ h0 ◦ Φ = h over a small neighborhood of 0 in
C2, which is what we wanted to prove.
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Moreover, because of the uniform transversality estimates and bounds on the
derivatives of sk, the derivatives of h are uniformly bounded. Therefore one can
choose the constant λ to be independent of k and of the given point x0 ∈ CJ̃k

(sk) :
it follows that the neighborhood of x0 over which the map fk has been shown to be
O(k−1/2)-approximately holomorphically modelled on the map h0 can be assumed to
contain a ball of fixed radius (depending on the bounds and transversality estimates,
but independent of x0 and k).

5.2. Structure near generic branch points. We now consider a branch
point x0 ∈ RJ̃k

(sk), which we assume to be at distance more than a fixed constant
δ from the set of cusp points CJ̃k

(sk). We want to show that, over a neighborhood
of x0, fk = Psk is approximately holomorphically modelled on the map (z1, z2) 7→
(z21 , z2).

From now on, we implicitly use the almost-complex structure J̃k and write R
for the intersection of RJ̃k

(sk) with the ball Bgk
(x0,

δ
2
). First note that, since R

remains at distance more than δ
2
from the cusp points, the tangent space to R

remains everywhere away from the kernel of ∂fk. Therefore, the restriction of fk
to R is a local diffeomorphism over a neighborhood of x0, and so fk(R) is locally
a smooth approximately holomorphic submanifold in CP2. It follows that there
exist approximately holomorphic coordinates (Z1, Z2) on a neighborhood of fk(x0)
in CP2 such that fk(R) is locally defined by the equation Z1 = 0.

Define the approximately holomorphic function z2 = f ∗kZ2 over a neighborhood
of x0, and notice that its differential dz2 = dZ2 ◦ dfk does not vanish, because by
construction Z2 is a coordinate on fk(R). Therefore, z2 can be considered as a local
complex coordinate function on a neighborhood of x0. In particular, the level sets
of z2 are smooth and intersect R transversely at a single point.

Take z1 to be an approximately holomorphic function on a neighborhood of x0
which vanishes at x0 and whose differential at x0 is linearly independent with that
of z2 (e.g. take the two differentials to be mutually orthogonal), so that (z1, z2)
define approximately holomorphic coordinates on a neighborhood of x0. From now
on we use the local coordinates (z1, z2) on X and (Z1, Z2) on CP2.

Because dz2|TR remains away from 0, R has locally an equation of the form
z1 = ρ(z2) for some approximately holomorphic function ρ (satisfying ρ(0) = 0
since x0 ∈ R). Therefore, shifting the coordinates on X in order to replace z1 by
z1 − ρ(z2), one can assume that z1 = 0 is a local equation of R. In the chosen local
coordinates, fk is therefore modelled on an approximately holomorphic map h from
a neighborhood of 0 in C2 with values in C2, of the form (z1, z2) 7→ (h1(z1, z2), z2),
with the following properties.

First, because R = {z1 = 0} is mapped to fk(R) = {Z1 = 0}, we have h1(0, z2) =
0 for all z2. Next, recall that the differential of fk has real rank 2 at any point of
R (because ∂fk has complex rank 1 and ∂̄fk vanishes over the kernel of ∂fk), so its
image is exactly the tangent space to fk(R). It follows that ∇h1 = 0 at every point
(0, z2) ∈ R.

Finally, because the chosen coordinates are approximately holomorphic the
quantity Jac(fk) is within O(k−1/2) of det(∂h) = (∂h1/∂z1) ∂z1 ∧ ∂z2. Therefore,
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the transversality to 0 of Jac(fk) implies that (∂2h1/∂z
2
1 , ∂

2h1/∂z1∂z2) has a norm
which remains larger than a fixed constant along R. However ∂2h1/∂z1∂z2 vanishes
at any point of R because ∂h1/∂z1 (0, z2) = 0 for all z2. Therefore the quantity
∂2h1/∂z

2
1 remains bounded away from 0 on R.

The above properties imply that h can be written as

h(z1, z2) =
(

α(z2)z
2
1 + β(z2)z1z̄1 + γ(z2)z̄

2
1 + ε(z1, z2), z2

)

,

where α is approximately holomorphic and bounded away from 0, while β and
γ are O(k−1/2) (because of asymptotic holomorphicity), and ε(z1, z2) = O(|z1|3)
is approximately holomorphic. Moreover, composing with the coordinate change
(Z1, Z2) 7→ (α(Z2)

−1Z1, Z2) (which is approximately holomorphic and has bounded
derivatives because α is bounded away from 0), one reduces to the case where α is
identically equal to 1.

We now want to reduce further the problem by removing the β and γ terms
in the above expression : for this, we first remark that, given any small enough
complex numbers β and γ, there exists a complex number λ, of norm less than
|β|+ |γ| and depending smoothly on β and γ, such that

λ = −γλ̄+
β

2
(1 + |λ|2).

Indeed, if |β| + |γ| < 1
2
the right hand side of this equation is a contracting map

of the unit disc to itself, so the existence of a solution λ in the unit disc follows
immediately from the fixed point theorem. Furthermore, using the bound |λ| < 1
in the right hand side, one gets that |λ| < |β|+ |γ|. Finally, the smooth dependence
of λ upon β and γ follows from the implicit function theorem.

Assuming again that |β|+ |γ| < 1
2
and defining λ as above, let

A =
1− λ̄2γ

1− |λ|4 and B =
γ − λ2

1− |λ|4 .

The complex numbers A and B are also smooth functions of β and γ, and it is clear
that |A−1| = O(|β|+ |γ|) and |B| = O(|β|+ |γ|). Moreover, one easily checks that,
in the ring of polynomials in z and z̄,

A(z + λz̄)2 +B(z̄ + λ̄z)2 = z2 + 2
λ+ γλ̄

1 + |λ|2 zz̄ + γz̄2 = z2 + βzz̄ + γz̄2.

Therefore, if one assumes k to be large enough, recalling that the quantities β(z2)
and γ(z2) which appear in the above expression of h are bounded by O(k−1/2), there
exist λ(z2), A(z2) and B(z2), depending smoothly on z2, such that |A(z2) − 1| =
O(k−1/2), |B(z2)| = O(k−1/2), |λ(z2)| = O(k−1/2) and

A(z2)(z1 + λ(z2)z̄1)
2 +B(z2)(z1 + λ(z2)z̄1)

2 = z21 + β(z2)z1z̄1 + γ(z2)z̄
2
1 .

So, let h0 be the map (z1, z2) 7→ (z21 , z2), and let Φ and Ψ be the two approxi-
mately holomorphic local diffeomorphisms of C2 defined by Φ(z1, z2) = (z1+λ(z2)z̄1,
z2) and Ψ(Z1, Z2) = (A(Z2)Z1 +B(Z2)Z̄1, Z2) : then

h(z1, z2) = Ψ ◦ h0 ◦ Φ(z1, z2) + (ε(z1, z2), 0).
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It follows immediately that Ψ−1 ◦ h ◦ Φ−1(z1, z2) = (z21 + O(|z1|3), z2). Therefore,
this new coordinate change allows us to consider only the case where h is of the
form (z1, z2) 7→ (z21 + ε̃(z1, z2), z2), where ε̃(z1, z2) = O(|z1|3).

Because ε̃(z1, z2) = O(|z1|3), the bound |ε̃(z1, z2)| < 1
2
|z1|2 holds over a neigh-

borhood of the origin whose size can be bounded from below independently of k
and x0 by using the uniform estimates on all derivatives. Over this neighborhood,
define

φ(z1, z2) = z1

√

1 +
ε̃(z1, z2)

z21

for z1 6= 0, where the square root is determined without ambiguity by the condition
that

√
1 = 1. Setting φ(0, z2) = 0, it follows from the bound |φ(z1, z2) − z1| =

O(|z1|2) that the function φ is C1. In general φ is not C2, because ε̃ may contain
terms involving z̄21z1 or z̄31 .

Because φ(z1, z2) = z1 + O(|z1|2), the map Θ : (z1, z2) 7→ (φ(z1, z2), z2) is a
C1 local diffeomorphism of C2 over a neighborhood of the origin. As previously,
the uniform bounds on all derivatives imply that the size of this neighborhood can
be bounded from below independently of k and x0. Moreover, it follows from the
asymptotic holomorphicity of sk that ε̃ has antiholomorphic derivatives bounded
by O(k−1/2), and so |∂̄φ| = O(k−1/2). Therefore Θ is O(k−1/2)-approximately holo-
morphic, and we have

h0 ◦Θ(z1, z2) = h(z1, z2),

which finally gives the desired result.

5.3. Proof of Theorem 3. Theorem 3 follows readily from the above argu-
ments : indeed, consider γ-generic and ∂̄-tame asymptotically holomorphic sections
sk of C3⊗Lk, and let J̃k be the almost-complex structures involved in the definition
of ∂̄-tameness. We need to show that, at any point x ∈ X, the maps fk = Psk are
approximately holomorphically modelled on one of the three maps of Definition 2.

First consider the case where x lies close to a point y ∈ CJ̃k
(sk). The argument

of Section 5.1 implies the existence of a constant δ > 0 independent of k and y such
that, over the ball Bgk

(y, 2δ), the map fk is J̃k-holomorphically modelled on the cusp
covering map (z1, z2) 7→ (z31 − z1z2, z2). If x lies within distance δ of y, Bgk

(y, 2δ)
is a neighborhood of x ; therefore the expected result follows at every point within
distance δ of CJ̃k

(sk) from the observation that, because |J̃k − J | = O(k−1/2), the

relevant coordinate chart on X is O(k−1/2)-approximately J-holomorphic.
Next, consider the case where x lies close to a point y of RJ̃k

(sk) which is itself
at distance more than δ from CJ̃k

(sk). The argument of Section 5.2 then implies
the existence of a constant δ′ > 0 independent of k and y such that, over the ball
Bgk

(y, 2δ′), the map fk is, in O(k−1/2)-approximately holomorphic C1 coordinate
charts, locally modelled on the branched covering map (z1, z2) 7→ (z21 , z2). Therefore,
if one assumes the distance between x and y to be less than δ′, the given ball is a
neighborhood of x, and the expected result follows.

So we are left only with the case where x is at distance more than δ ′ from RJ̃k
(sk).

Assuming k to be large enough, it then follows from the bound |J̃k−J | = O(k−1/2)
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that x is at distance more than 1
2
δ′ from RJ(sk). Therefore, the γ-transversality

to 0 of Jac(fk) implies that |Jac(fk)(x)| is larger than α = min( 1
2
δ′γ, γ) (otherwise,

the downward gradient flow of |Jac(fk)| would reach a point of RJ(sk) at distance
less than 1

2
δ′ from x).

Recalling that |∂̄fk| = O(k−1/2), one gets that fk is a O(k−1/2)-approximately
holomorphic local diffeomorphism over a neighborhood of x. Therefore, choose
holomorphic complex coordinates on CP2 near fk(x) and pull them back by fk to
obtain O(k−1/2)-approximately holomorphic local coordinates over a neighborhood
of x : in these coordinates, the map fk becomes the identity map, which ends the
proof of Theorem 3.

6. Further remarks

6.1. Branched coverings of CP2. A natural question to ask about the re-
sults obtained in this paper is whether the property of being a (singular) branched
covering of CP2, i.e. the existence of a map to CP2 which is locally modelled at
every point on one of the three maps of Definition 2, strongly restricts the topology
of a general compact 4-manifold. Since the notion of approximately holomorphic
coordinate chart on X no longer has a meaning in this case, we relax Definition 2
by only requiring the existence of a local identification of the covering map with
one of the model maps in a smooth local coordinate chart on X. However we keep
requiring that the corresponding local coordinate chart on CP2 be approximately
holomorphic, so that the branch locus in CP2 remains an immersed symplectic curve
with cusps. Call such a map a topological singular branched covering of CP2. Then
the following holds :

Proposition 10. Let X be a compact 4-manifold and consider a topological
singular covering f : X → CP2 branched along a submanifold R ⊂ X. Then X
carries a symplectic structure arbitrarily close to f ∗ω0, where ω0 is the standard
symplectic structure of CP2.

Proof. The closed 2-form f ∗ω0 on X defines a symplectic structure on X −R
which degenerates along R. Therefore, one needs to perturb it by adding a small
multiple of a closed 2-form with support in a neighborhood of R in order to make
it nondegenerate. This perturbation can be constructed as follows.

Call C the set of cusp points, i.e. the points of R where the tangent space to R
lies in the kernel of the differential of f , or equivalently the points around which f is
modelled on the map (z1, z2) 7→ (z31−z1z2, z2). Consider a point x ∈ C, and work in
local coordinates such that f identifies with the model map. In these coordinates,
a local equation of R is z2 = 3z21 , and the kernel K of the differential of f coincides
at every point of R with the subspace C× {0} of the tangent space ; this complex
identification determines a natural orientation ofK. Fix a constant ρx > 0 such that
BC(0, 2ρx)×BC(0, 2ρ

2
x) is contained in the local coordinate patch, and choose cut-off

functions χ1 and χ2 over C in such a way that χ1 equals 1 over BC(0, ρx) and vanishes
outside of BC(0, 2ρx), and that χ2 equals 1 over BC(0, ρ

2
x) and vanishes outside of

BC(0, 2ρ
2
x). Then, let ψx be the 2-form which equals d(χ1(z1)χ2(z2)x1 dy1) over the

local coordinate patch, where x1 and y1 are the real and imaginary parts of z1, and
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which vanishes over the remainder of X : the 2-form ψx coincides with dx1 ∧ dy1
over a neighborhood of x. More importantly, it follows from the choice of the cut-off
functions that the restriction of ψx to K = C× {0} is non-negative at every point
of R, and positive non-degenerate at every point of R which lies sufficiently close
to x.

Similarly, consider a point x ∈ R away from C and local coordinates such that f
identifies with the model map (z1, z2) 7→ (z21 , z2). In these coordinates, R identifies
with {0} × C, and the kernel K of the differential of f coincides at every point
of R with the subspace C × {0} of the tangent space. Fix a constant ρx > 0
such that BC(0, 2ρx) × BC(0, 2ρx) is contained in the local coordinate patch, and
choose a cut-off function χ over C which equals 1 over BC(0, ρx) and 0 outside of
BC(0, 2ρx). Then, let ψx be the 2-form which equals d(χ(z1)χ(z2)x1 dy1) over the
local coordinate patch, where x1 and y1 are the real and imaginary parts of z1, and
which vanishes over the remainder of X : as previously, the restriction of ψx to
K = C × {0} is non-negative at every point of R, and positive non-degenerate at
every point of R which lies sufficiently close to x.

Choose a finite collection of points xi of R (including all the cusp points) in such
a way that the neighborhoods of xi over which the 2-forms ψxi

restrict positively
to K cover all of R, and define α as the sum of all the 2-forms ψxi

. Then it follows
from the above definitions that the 2-form α is exact, and that at any point of R
its restriction to the kernel of the differential of f is positive and non-degenerate.
Therefore, the 4-form f ∗ω0 ∧ α is a positive volume form at every point of R.

Now choose any metric on a neighborhood of R, and let dR be the distance
function to R. It follows from the compactness of X and R and from the general
properties of the map f that, using the orientation induced by f and the chosen
metric to implicitly identify 4-forms with functions, there exist positive constants
K, C, C ′ and M such that the following bounds hold over a neighborhood of R :
f ∗ω0 ∧ f ∗ω0 ≥ KdR, f

∗ω0 ∧ α ≥ C − C ′dR, and |α ∧ α| ≤ M . Therefore, for all
ε > 0 one gets over a neighborhood of R the bound

(f ∗ω0 + ε α) ∧ (f ∗ω0 + ε α) ≥ (2ε C − ε2M) + (K − 2ε C ′)dR.

If ε is chosen sufficiently small, the coefficients 2ε C − ε2M and K − 2ε C ′ are both
positive, which implies that the closed 2-form f ∗ω0 + ε α is everywhere nondegen-
erate, and therefore symplectic. ¤

Another interesting point is the compatibility of our approximately holomorphic
singular branched coverings with respect to the symplectic structures ω on X and
ω0 in CP2 (as opposed to the compatibility with the almost-complex structures,
which has been a major preoccupation throughout the previous sections).

It is easy to check that given a covering map f : X → CP2 defined by a section
of C3 ⊗ Lk, the number of preimages of a generic point is equal to 1

4π2k
2(ω2.[X]),

while the homology class of the preimage of a generic line CP1 ⊂ CP2 is Poincaré
dual to 1

2π
k[ω]. If we normalize the standard symplectic structure ω0 on CP2 in

such a way that the symplectic area of a line CP1 ⊂ CP2 is equal to 2π, it follows
that the cohomology class of f ∗ω0 is [f ∗ω0] = k[ω].



6. FURTHER REMARKS 75

As we have said above, the pull-back f ∗ω0 of the standard symplectic form of
CP2 by the covering map degenerates along the set of branch points, so there is no
chance of (X, f ∗ω0) being symplectic and symplectomorphic to (X, kω). However,
one can prove the following result which is nearly as good :

Proposition 11. The 2-forms ω̃t = tf ∗ω0 + (1− t)kω on X are symplectic for
all t ∈ [0, 1). Moreover, for t ∈ [0, 1) the manifolds (X, ω̃t) are all symplectomorphic
to (X, kω).

This means that f ∗ω0 is, in some sense, a degenerate limit of the symplectic
structure defined by kω : therefore the covering map f behaves quite reasonably
with respect to the symplectic structures.

Proof. The 2-forms ω̃t are all closed and lie in the same cohomology class.
We have to show that they are non-degenerate for t < 1. For this, let x be any
point of X and let v be a nonzero tangent vector at x. It is sufficient to prove that
there exists a vector w ∈ TxX such that ω(v, w) > 0 and f ∗ω0(v, w) ≥ 0 : then
ω̃t(v, w) > 0 for all t < 1, which implies the non-degeneracy of ω̃t.

Recall that, by definition, there exist local approximately holomorphic coordi-
nate maps φ over a neighborhood of x and ψ over a neighborhood of f(x) such that
locally f = ψ−1 ◦ g ◦ φ where g is a holomorphic map from a subset of C2 to C2.
Define w = φ−1∗ J0φ∗v, where J0 is the standard complex structure on C2 : then we
have w = (φ∗J0)v and, because g is holomorphic, f∗w = (ψ∗J0)f∗v.

Because the coordinate maps are O(k−1/2)-approximately holomorphic, we have
|w − Jv| ≤ Ck−1/2|v| and |f∗w − J0f∗v| ≤ Ck−1/2|f∗v|, where C is a constant
and J0 is the standard complex structure on CP2. It follows that ω(v, w) ≥
|v|2−Ck−1/2|v|2 > 0, and that ω0(f∗v, f∗w) ≥ |f∗v|2−Ck−1/2|f∗v|2 ≥ 0. Therefore,
ω̃t(v, w) > 0 for all t ∈ [0, 1) ; since the existence of such a w holds for every nonzero
vector v, this proves that the closed 2-forms ω̃t are non-degenerate, and therefore
symplectic.

Moreover, these symplectic forms all lie in the cohomology class [kω], so it
follows from Moser’s stability theorem that the symplectic structures defined on X
by ω̃t for t ∈ [0, 1) are all symplectomorphic. ¤

6.2. Symplectic Lefschetz pencils. The techniques used in this paper can
also be applied to the construction of sections of C2 ⊗ Lk (i.e. pairs of sections of
Lk) satisfying appropriate transversality properties : this is the existence result for
Lefschetz pencil structures (and uniqueness up to isotopy for a given value of k)
obtained by Donaldson [D2].

For the sake of completeness, we give here an overview of a proof of Donaldson’s
theorem using the techniques described in the above sections. Let (X,ω) be a
compact symplectic manifold (of arbitrary dimension 2n) such that 1

2π
[ω] is integral,

and as before consider a compatible almost-complex structure J , the corresponding
metric g, and the line bundle L whose first Chern class is 1

2π
[ω], endowed with a

Hermitian connection of curvature −i ω. The required properties of the sections we
wish to construct are determined by the following statement :
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Proposition 12. Let sk = (s0k, s
1
k) be asymptotically holomorphic sections of

C2 ⊗ Lk over X for all large k, which we assume to be η-transverse to 0 for some
η > 0. Let Fk = s−1k (0) (it is a real codimension 4 symplectic submanifold of X),
and define the map fk = Psk = (s0k : s1k) from X − Fk to CP1. Assume furthermore
that ∂fk is η-transverse to 0, and that ∂̄fk vanishes at every point where ∂fk = 0.
Then, for all large k, the section sk and the map fk define a structure of symplectic
Lefschetz pencil on X.

Indeed, Fk corresponds to the set of base points of the pencil, while the hyper-
surfaces (Σk,u)u∈CP1 forming the pencil are defined to be Σk,u = f−1k (u)∪Fk, i.e. Σk,u

is the set of all points where (s0k, s
1
k) belongs to the complex line in C2 determined

by u. The transversality to 0 of sk gives the expected pencil structure near the base
points, and the asymptotic holomorphicity implies that, near any point of X − Fk

where ∂fk is not too small, the hypersurfaces Σk,u are smooth and symplectic (and
even approximately J-holomorphic).

Moreover, the transversality to 0 of ∂fk implies that ∂fk becomes small only
in the neighborhood of finitely many points where it vanishes, and that at these
points the holomorphic Hessian ∂∂fk is large enough and nondegenerate. Because
∂̄fk also vanishes at these points, an argument similar to that of §5.2 shows that,
near its critical points, fk behaves like a complex Morse function, i.e. it is locally
approximately holomorphically modelled on the map (z1, . . . , zn) 7→

∑

z2i from Cn

to C. The approximate holomorphicity of fk and its structure at the critical points
can be easily shown to imply that the hypersurfaces Σk,u are all symplectic, and
that only finitely many of them have isolated singular points, which correspond to
the critical points of fk and whose structure is therefore completely determined.

Therefore, the construction of a Lefschetz pencil structure on X can be car-
ried out in three steps. The first step is to obtain for all large k sections sk of
C2 ⊗ Lk which are asymptotically holomorphic and transverse to 0 : for example,
the existence of such sections follows immediately from the main result of [A1]. As a
consequence, the required properties are satisfied on a neighborhood of Fk = s−1k (0).

The second step is to perturb sk, away from Fk, in order to obtain the transver-
sality to 0 of ∂fk. For this purpose, one uses an argument similar to that of
§2.2, but where Proposition 2 has to be replaced by a similar result for approx-
imately holomorphic functions defined over a ball of Cn with values in Cn which
has been announced by Donaldson (see [D2]). Over a neighborhood of any given
point x ∈ X − Fk, composing with a rotation of C2 in order to ensure the non-
vanishing of s0k over a ball centered at x and defining hk = (s0k)

−1s1k, one remarks
that the transversality to 0 of ∂fk is locally equivalent to that of ∂hk. Choosing
local approximately holomorphic coordinates zik, it is possible to write ∂hk as a lin-
ear combination

∑n
i=1 u

i
kµ

i
k of the 1-forms µi

k = ∂(zik.(s
0
k)
−1srefk,x). The existence of

wk ∈ Cn of norm less than a given δ ensuring the transversality to 0 of uk−wk over
a neighborhood of x is then given by the suitable local transversality result, and it
follows easily that the section (s0k, s

1
k −

∑

wi
kz

i
ks

ref
k,x) satisfies the required transver-

sality property over a ball around x. The global result over the complement in X
of a small neighborhood of Fk then follows by applying Proposition 3.
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An alternate strategy allows one to proceed without proving the local transver-
sality result for functions with values in Cn, if one assumes s0k and s1k to be linear
combinations of sections with uniform Gaussian decay (this is not too restrictive
since the iterative process described in [A1] uses precisely the sections srefk,x as build-
ing blocks). In that case, it is possible to locally trivialize the cotangent bundle
T ∗X, and therefore work component by component to get the desired transversality
result ; in a manner similar to the argument of [A1], one uses Lemma 6 to reduce
the problem to the transversality of sections of line bundles over submanifolds of
X, and Proposition 6 as local transversality result. The assumption on sk is used
to prove the existence of asymptotically holomorphic sections which approximate
sk very well over a neighborhood of a given point x ∈ X and have Gaussian decay
away from x : this makes it possible to find perturbations with Gaussian decay
which at the same time behave nicely with respect to the trivialization of T ∗X.
This way of obtaining the transversality to 0 of ∂fk is very technical, so we don’t
describe the details.

The last step in the proof of Donaldson’s theorem is to ensure that ∂̄fk vanishes
at the points where ∂fk vanishes, by perturbing sk by O(k−1/2) over a neighborhood
of these points. The argument is a much simpler version of §4.2 : on a neighborhood
of a point x where ∂fk vanishes, one defines a section χ of f ∗kTCP1 by χ(expx(ξ)) =
β(|ξ|) ∂̄fk(x)(ξ), where β is a cut-off function, and one uses χ as a perturbation of
sk in order to cancel the antiholomorphic derivative at x.

6.3. Symplectic ampleness. We have seen that similar techniques apply in
various situations involving very positive bundles over a compact symplectic man-
ifold, such as constructing symplectic submanifolds ([D1],[A1]), Lefschetz pencils
[D2], or covering maps to CP2. In all these cases, the result is the exact approxi-
mately holomorphic analogue of a classical result of complex projective geometry.
Therefore, it is natural to wonder if there exists a symplectic analogue of the notion
of ampleness : for example, the line bundle L endowed with a connection of cur-
vature −i ω, when raised to a sufficiently large power, admits many approximately
holomorphic sections, and so it turns out that some of these sections behave like
generic sections of a very ample bundle over a complex projective manifold.

Let (X,ω) be a compact 2n-dimensional symplectic manifold endowed with a
compatible almost-complex structure, and fix an integer r : it seems likely that any
sufficiently positive line bundle over X admits r + 1 approximately holomorphic
sections whose behavior is similar to that of generic sections of a very ample line
bundle over a complex projective manifold of dimension n. For example, the zero
set of a suitable section is a smooth approximately holomorphic submanifold of
X ; two well-chosen sections define a Lefschetz pencil ; for r = n, one expects
that n + 1 well-chosen sections determine an approximately holomorphic singular
covering X → CPn (this is what we just proved for n = 2) ; for r = 2n, it should
be possible to construct an approximately holomorphic immersion X → CP2n, and
for r > 2n a projective embedding. Moreover, in all known cases, the space of
“good” sections is connected when the line bundle is sufficiently positive, so that
the structures thus defined are in some sense canonical up to isotopy.
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However, the constructions tend to become more and more technical when one
gets to the more sophisticated cases, and the development of a general theory of
symplectic ampleness seems to be a necessary step before the relations between
the approximately holomorphic geometry of compact symplectic manifolds and the
ordinary complex projective geometry can be fully understood.
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[D3] S.K. Donaldson, Lefschetz Fibrations in Symplectic Geometry, Documenta Math., Extra
Volume ICM 1998, II, 309–314.

[FM] R. Friedman, J.W. Morgan, Algebraic Surfaces and Seiberg-Witten Invariants, J. Algebraic
Geom. 6 (1997), 445–479.

[Fu] T. Fuller, Lefschetz Fibrations and 3-fold Branched Covering Spaces, preprint (1998),
math.GT/9806010.

[Go] R.E. Gompf, A New Construction of Symplectic Manifolds, Ann. of Math. 142 (1995),
527–595.

[Gri] P.A. Griffiths, Entire Holomorphic Mappings in One and Several Complex Variables, Ann.
Math. Studies no 85, Princeton University Press, Princeton, 1976.

[GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York,
1978.

[Gro1] M. Gromov, Pseudo-Holomorphic Curves in Symplectic Manifolds, Inventiones Math. 82

(1985), 307–347.

[Gro2] M. Gromov, Partial Differential Relations, Ergebnisse Math. (3) no 9, Springer, 1986.

[McS1] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford University Press,
Oxford, 1995.

[McS2] D. McDuff and D. Salamon, J-holomorphic Curves and Quantum Cohomology, Univ. Lec-
ture Series no 6, Amer. Math. Soc., Providence, 1994.

[Moi1] B. Moishezon, Stable Branch Curves and Braid Monodromies, Algebraic Geometry (Chi-
cago, 1980), Lecture Notes in Math. 862, Springer, 1981, 107–192.

[Moi2] B. Moishezon, The Arithmetic of Braids and a Statement of Chisini, Geometric Topology
(Haifa, 1992), Contemp. Math. 164, Amer. Math. Soc., Providence, 1994, 151–175.

[Mor] J.W. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth

Four-Manifolds, Mathematical Notes no 44, Princeton University Press, Princeton, 1996.
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