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Symplectic manifolds

A symplectic structure on a smooth manifold is a 2-form w such that dw = 0 and
wA -+ Awis a volume form.

Example: R** wg = > dx; A dy;.

(Darboux: every symplectic manifold is locally ~ (R?",wy), i.e. there are no local
invariants).

Example: Riemann surfaces (2, voly); CP"; complex projective manifolds.

The symplectic category is strictly larger (Thurston 1976).

Gompf 1994: G finitely presented group = 3I(X*, w) compact symplectic such that
1 <X> = G.

Symplectic manifolds are not always complex, but they are almost-complex, i.e.
there exists J € End(TX) such that

J*=—1d, g(u,v) = w(u, Jv) Riemannian metric.

At any given point (X, w, J) looks like (C", wy, %), but J is not integrable (V.J # 0;
0% # 0; no holomorphic coordinates).



Symplectic topology

Hierarchy of compact oriented 4-manifolds:

COMPLEX PROJ. € SYMPLECTIC € SMOOTH

= (Classification questions!

Symplectic manifolds retain some (not all!) features of complex proj. manifolds; yet
(almost) every smooth 4-manifold admits a “near-symplectic” structure (sympl. out-
side circles).

Many new developments in the 1990s:
— J-holomorphic curves (Gromov-Witten invariants, Floer homology, ...)
— obstructions to existence of w in dim. 4 (Taubes: Seiberg-Witten invariants)
— constructions of new examples (symplectic surgeries: Fintushel-Stern, Gompf)

— structure results (e.g., Donaldson: Lefschetz pencils)

Focus of the talk: symplectic branched covers in dimension 4.



Symplectic branched covers

X* compact oriented, (Y4, wy) compact symplectic.
f X — Y is asymplectic branched covering if Vp € X, 3 local coordinates

¢: X DU, — C* (oriented) | | | |
Y D Vi — C? (compatible: wy (v, iv) > 0) in which f is one of:

e local diffecomorphism: (x,y) — (x,y).

e simple branching: (z,y) — (2°, ).
R: z=0 f(R): z1=0

o cusp: (3,y) — (2% — 2,y).
R: y=32* f(R): 272} =4z -
R = {det(df) = 0} C X is the ramification curve (smooth).
D = f(R) is the branch curve (symplectic: wjrp > 0), with singularities:

complex cusps; nodes (both orientations)
> X X
Proposition. X carries a natural symplectic structure.
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Branched covers of CP?

Proposition. f: X*— (Y4, wy) symplectic branched cover = X carries a natural
symplectic structure.

lwx| = [ffwy], wx is canonical up to symplectomorphism.

Theorem. (X* w) compact symplectic, [w] € H*(X,Z) = X can be realized as
symplectic branched cover of CP?.

3 fi, : X — CP? inducing w; ~ kw, canonical up to isotopy for & > 0. The topology
of fi., e.g. the branch curve D;, C CP?, yields invariants of (X,w).

Tool: “approx. hol. geometry”: sections of L ¢;(L®*) = k[w], with |0s]c0 < |0s|c0.

D, ¢ CP? symplectic, with generic singularities = complex cusps, and nodes (both
orientations)

Theorem = up to cancellation of pairs of nodes, the topology of Dy is a symplectic
invariant (if k£ large).

=



Topological invariants

2
CP D
Vi
N:1

Topological data for a branched cover of CP?:
1) Branch curve: D € CP*  (up to isotopy and node cancellations).
2) Monodromy: @ : m(CP? — D) = Sy (N =deg f) (maps 7; to transpositions).

D and 0 determine (X, w) up to symplectomorphism.
= In principle it is enough to understand plane curves !

Fact: D is isotopic to a complex curve (up to node cancellations) iff X is Kéhler
(complex projective).

= study the symplectic isotopy problem.



The topology of plane curves

(Moishezon-Teicher; Auroux-Katzarkov)

Perturbation = D = singular branched cover of CP!.

CP* — {o0} D
%

deg D =d

CP! I 1773<3%’01271:x2)|—><330;x1)

Monodromy = p : 71(C — {pts}) — By (braid group)

= D is described by a “braid group factorization” (involving cusps, nodes, tangencies).

The braid factorization characterizes D completely (and gives a combinatorial de-
scription of sympl. manifolds)

Problem: can compute for examples, but can’t compare.
= more manageable (incomplete) invariant 7
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Stabilized fundamental groups
(Auroux-Donaldson-Katzarkov-Yotov 2002)
Question (Zariski...): D sing. plane curve, m1(CP* — D) = ?
Moishezon-Teicher: 7 (CP? — D) to study complex surfaces.
m1(CP?* — D) is related to the braid factorization. (Zariski-van Kampen theorem)

Belief: for high degree branch curves, m1(CP* — D) is determined in a simple manner
by the topology of X7

Symplectic stabilization of m1(CP? — D): adding nodes (in manner compatible with
0 : 7 (CP? — D) — Sy) introduces commutation relations
= quotient by subgroup K = ([,7'], 7,7 geom. generators, 6(), 0(7") disjoint).

Theorem. For k> 0, G1(X,w) = m(CP? — D)/ K}, is a symplectic invariant.



Stabilized fundamental groups

Fact: 1—>G2—>Gk(M>)SNXZd—>ZQ—>1.

(N = deg fi, d = deg Dy; 6, =monodromy, §; = linking map)
Theorem. If71(X) = 1 then we have a natural surjection ¢y : Ab G — (Z2/Ap) !
N, = {(k[W] -C, Ky - C), C e HQ(X, Z)}

Known examples: (for k£ > 0)
e CP* CP' x CP' (Moishezon)
e some rational surfaces and K3’s (Robb; Teicher et al.)
e Hirzebruch surfaces, double covers of CP' x CP* (ADKY)

= Conjectures: for k£ > 0,

1) X alg. surface = Kj, = {1} and G}, = 7(CP* — D,,).
2) m(X) =1 = ¢ is an isomorphism.
3) m(X) =1=[GY, GY] = quotient of Zy X Zo.



Isotopy results for plane curves

When is a (singular) symplectic curve in CP? (or a complex surface) isotopic to a
complex curve?

e Cromov (1985): every smooth symplectic curve of degree 1 or 2 in CP? is isotopic
to a complex curve.
(Tool: pseudo-holomorphic curves)

e Siebert-Tian (2002): smooth sympl. curves of degree < 17 in CP?; connected curves
of degree < 7 in Hirzebruch surfaces.

e Barraud (2000), Shevchishin (2002): certain simple singular configurations in CIP*.
e Francisco (2004): singular curves of degree d < 9 with m cusps in CP? (if d > 6,
assume 4(d —6) — 1 < m < 3d/2).

(in classification of branched covers, these are cases without any non-Kéhler examples)



Stable isotopy results

D, D' symplectic (“Hurwitz”) curves in CP? or Hirzebruch surfaces, [D] = [D’], same
numbers of nodes, cusps, (A,-sings.):

e Kharlamov-Kulikov (2003) = after adding sufficiently many lines (fibers) to D, D’
and smoothing the intersections, D, D’ become isotopic.

e A -Kulikov-Shevchishin (2004): D, D’ are isotopic up to creations/cancellations of
pairs of nodes.

=

(in general, not compatible with branched covers!)

For branched covers:

e (2002): X genus 2 Lefschetz fibration = X becomes complex projective after sta-
bilization by fiber sums with rational surfaces along genus 2 curves.

(extends to hyperelliptic Lefschetz fibrations; what about the general case?)

Conjecture: two compact integral symplectic 4-manifolds with same (c?, co, ¢1.[w], [w]?)
become symplectomorphic after blow-ups and fiber sums with holomorphic fibrations.
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Non-isotopy phenomena

e intushel-Stern (1999), Smith (2001): infinitely many non-isotopic smooth connected
symplectic curves in certain 4-manifolds (multiples of classes of square zero).

Use braiding constructions on parallel copies; distinguish using topology of branched
covers (SW invariants, . .. )

e Etgu-Park, Vidussi (2001-2004)

e Moishezon (1992): infinitely many non-isotopic sing. sympl. curves in CP? (fixed
number of cusp and node singularities).
Use braid monodromy and 71 of complement (hard!)

(Auroux-Donaldson-Katzarkov 2002): elementary interpretation?

Moishezon < braiding; modifies ¢1(Kx) vs. |wx]
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Given f : X — Y symplectic covering with branch curve D,
Braiding D / Lagrangian annulus A <=
Luttinger surgery of X / Lagrangian torus T' C f~1(A).

(i.e. take out a neighborhood of T" and glue it back via a symplectomorphism wrapping
the meridian around the torus).

Questions:

e are any two symplectic cuspidal plane curves with same (degree, # nodes, # cusps)
equivalent under braiding moves?

e are any two compact integral symplectic 4-manifolds with same (cf, co, ¢1.[w], [w]?)
equivalent under Luttinger surgeries?

(Remark: many constructions rely on twisted fiber sums or link surgeries, which reduce to Luttinger surgery)
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